Open Access. Powered by Scholars. Published by Universities.®

Aerospace Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Aerospace Engineering

Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Aroh Barjatya, Shantanab Debchoudhury, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Et Al. Aug 2022

Rocket Measurements Of Electron Energy Spectra From Earth’S Photoelectron Production Layer, Aroh Barjatya, Shantanab Debchoudhury, Glyn A. Collinson, Alex Glocer, Dennis Chornay, Et Al.

Publications

Photoelectrons are crucial to atmospheric physics. They heat the atmosphere, strengthen 28 planetary ambipolar electric fields, and enhance the outflow of ions to space. However, 29 there exist only a handful of measurements of their energy spectrum near the peak of 30 photoproduction. We present calibrated energy spectra of pristine photoelectrons at their 31 source by a prototype Dual Electrostatic Analyzer (DESA) instrument flown on July 11 32 2021 aboard the Dynamo-2 sounding rocket (NASA № 36.357). Photopeaks arising from 33 30.4nm He-II spectral line were observed throughout the flight above 120km. DESA also 34 successfully resolved the rarely observed …


Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley Aug 2022

Analysis Of Turbulent Flow Behavior In Helicopter Rotor Hub Wakes, Forrest Mobley

Masters Theses

The rotor hub is one of the most important features of all helicopters, as it provides the pilot a means for controlling the vehicle by changing the characteristics of the main and tail rotors. The hub also provides a structural foundation for the rotors and allows for the rotor blades to respond to aerodynamic forces while maintaining controllability and stability. Due to the inherent geometry and high rate of rotation, the rotor hub in its current form acts a large bluff body and is the primary source of parasite drag on the helicopter, despite its relatively small size. The rotor …


Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao May 2022

Direct Simulation And Reduced-Order Modeling Of Premixed Flame Response To Acoustic Modulation, Zheng Qiao

Theses and Dissertations

This dissertation introduces a general, predictive and cost-efficient reduced-order modeling (ROM) technique for characterization of flame response under acoustic modulation. The model is built upon the kinematic flame model–G-equation to describe the flame topology and dynamics, and the novelties of the ROM lie in i) a procedure to create the compatible base flow that can reproduce the correct flame geometry and ii) the use of a physically-consistent acoustic modulation field for the characterization of flame response. This ROM addresses the significant limitations of the classical kinematic model, which is only applicable to simple flame configurations and relies on ad-hoc models …


Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger Apr 2022

Vertical Take-Off And Landing Control Via Dual-Quaternions And Sliding Mode, Joshua Sonderegger

Doctoral Dissertations and Master's Theses

The landing and reusability of space vehicles is one of the driving forces into renewed interest in space utilization. For missions to planetary surfaces, this soft landing has been most commonly accomplished with parachutes. However, in spite of their simplicity, they are susceptible to parachute drift. This parachute drift makes it very difficult to predict where the vehicle will land, especially in a dense and windy atmosphere such as Earth. Instead, recent focus has been put into developing a powered landing through gimbaled thrust. This gimbaled thrust output is dependent on robust path planning and controls algorithms. Being able to …


Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand Mar 2022

Moving Polygon Methods For Incompressible Fluid Dynamics, Chris Chartrand

Doctoral Dissertations

Hybrid particle-mesh numerical approaches are proposed to solve incompressible fluid flows. The methods discussed in this work consist of a collection of particles each wrapped in their own polygon mesh cell, which then move through the domain as the flow evolves. Variables such as pressure, velocity, mass, and momentum are located either on the mesh or on the particles themselves, depending on the specific algorithm described, and each will be shown to have its own advantages and disadvantages. This work explores what is required to obtain local conservation of mass, momentum, and convergence for the velocity and pressure in a …


An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park Mar 2022

An Accurate And Computationally Efficient Method For Battery Capacity Fade Modeling, D. M. Ajiboye, Jonathan W. Kimball, R.(Robert) G. Landers, John (T.) Park

Electrical and Computer Engineering Faculty Research & Creative Works

The Industry Demand for Accurate and Fast Algorithms that Model Vital Battery Parameters, E.g., State-Of-Health, State-Of-Charge, Pulse-Power Capability, is Substantial. One of the Most Critical Models is Battery Capacity Fade. the Key Challenge with Physics-Based Battery Capacity Fade Modeling is the High Numerical Cost in Solving Complex Models. in This Study, an Efficient and Fast Model is Presented to Capture Capacity Fade in Lithium-Ion Batteries. Here, the High-Order Chebyshev Spectral Method is Employed to Address the Associated Complexity with Physics-Based Capacity Fade Models. its Many Advantages, Such as Low Computational Memory, High Accuracy, Exponential Convergence, and Ease of Implementation, Allow …


Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian Jan 2022

Editorial For The Special Issue On Micromachines For Non-Newtonian Microfluidics, Lanju Mei, Shizhi Qian

Mechanical & Aerospace Engineering Faculty Publications

In lieu of an abstract, this is an excerpt from the first page.

Microfluidics has seen a remarkable growth over the past few decades, with its extensive applications in engineering, medicine, biology, chemistry, etc [...]


Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch Jan 2022

Numerical Investigations Of 2-D Magnetic Nozzles On Pulsed Plasma Plumes, Joshua Daniel Burch

Masters Theses

"This research presents studies of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X's USim® software to quantify the nozzle's capabilities. A2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T's Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were …


Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu Jan 2022

Recent Analytic Development Of The Dynamic Q-Tensor Theory For Nematic Liquid Crystals, Xiang Xu

Mathematics & Statistics Faculty Publications

Liquid crystals are a typical type of soft matter that are intermediate between conventional crystalline solids and isotropic fluids. The nematic phase is the simplest liquid crystal phase, and has been studied the most in the mathematical community. There are various continuum models to describe liquid crystals of nematic type, and Q-tensor theory is one among them. The aim of this paper is to give a brief review of recent PDE results regarding the Q-tensor theory in dynamic configurations.


On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark Jan 2022

On The Implementation And Further Validation Of A Time Domain Boundary Element Method Broadband Impedance Boundary Condition, Fang Q. Hu, Douglas M. Nark

Mathematics & Statistics Faculty Publications

A time domain boundary integral equation with Burton-Miller reformulation is presented for acoustic scattering by surfaces with liners in a uniform mean flow. The Ingard-Myers impedance boundary condition is implemented using a broadband multipole impedance model and converted into time domain differential equations to augment the boundary integral equation. The coupled integral-differential equations are solved numerically by a March-On-in-Time (MOT) scheme. While the Ingard-Myers condition is known to support Kelvin-Helmholtz instability due to its use of a vortex sheet interface between the flow and the liner surface, it is found that by neglecting a second derivative term in the current …