Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

SAR

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 55

Full-Text Articles in Engineering

Gps-Denied Navigation Using Synthetic Aperture Radar, Tucker Hathaway Dec 2023

Gps-Denied Navigation Using Synthetic Aperture Radar, Tucker Hathaway

All Graduate Theses and Dissertations, Fall 2023 to Present

In most modern navigation systems, GPS is used to determine the precise location of the vehicle; however, GPS signals can easily be blocked, jammed, or spoofed. These signals can be blocked by canyons or tall buildings. Additionally, adversaries can transmit signals that either make GPS signals difficult to interpret or that imitate real GPS signals and cause a navigation system to think it is somewhere other than its true location. GPS-denied (GPS-D) navigation is the process of navigating in the absence of GPS.

Many methods of performing GPS-D navigation have been proposed and explored. One such method is to use …


Flood Warning: A Generalized Approach To Forecast The Impacts Of Flooding Events Using Arcgis Pro, Qgis, And Python, Robert Evan Smith Jan 2022

Flood Warning: A Generalized Approach To Forecast The Impacts Of Flooding Events Using Arcgis Pro, Qgis, And Python, Robert Evan Smith

Theses and Dissertations

Floods are the most common global natural disaster, and 1 billion people live in floodplains worldwide adding to the impactful damage that inundation causes. Disaster managers strive to mitigate damages to their communities but need to know what the impact of a potential flood may be. GEOGloWS ECMWF Streamflow Services estimates forecasted streamflow around the world. These forecasted streamflow's can be used to create predicted flood extent maps using Height Above Nearest Drainage (HAND) or Sedimentation and River Hydraulics - Two Dimension (SRH-2D). Another method to obtain a flood map is using Setinel-1 satellite Synthetic Aperture Radar (SAR) imagery. Flood …


Forecasting Inundation Extents In The Amazon Basin Using Srh-2d And Hand Based On The Geoglows Ecmwf Streamflow Services, Christopher Hyde Edwards Aug 2021

Forecasting Inundation Extents In The Amazon Basin Using Srh-2d And Hand Based On The Geoglows Ecmwf Streamflow Services, Christopher Hyde Edwards

Theses and Dissertations

Floods are the most impactful natural disasters on earth, and reliable flood warning systems are critical for disaster preparation, mitigation, and response. The GEOGloWS ECMWF Streamflow Services (GESS) provide forecasted streamflow throughout the world. While forecasted discharge is essential to flood warning, forecasted inundation extents are required to understand and predict flood impact. In this research, I sought to expand GESS flood warning potential by generating inundation extents from streamflow forecasts. I compared Height Above Nearest Drainage (HAND), a method beneficial for flood mapping on a watershed scale, to a 2D hydrodynamic model, specifically Sedimentation and River Hydraulics – Two …


Design And Implementation Of A Modular Human-Robot Interaction Framework, Michael J. Juri Jun 2021

Design And Implementation Of A Modular Human-Robot Interaction Framework, Michael J. Juri

Master's Theses

With the increasing longevity that accompanies advances in medical technology comes a host of other age-related disabilities. Among these are neuro-degenerative diseases such as Alzheimer's disease, Parkinson's disease, and stroke, which significantly reduce the motor and cognitive ability of affected individuals. As these diseases become more prevalent, there is a need for further research and innovation in the field of motor rehabilitation therapy to accommodate these individuals in a cost-effective manner. In recent years, the implementation of social agents has been proposed to alleviate the burden on in-home human caregivers. Socially assistive robotics (SAR) is a new subfield of research …


An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr. May 2021

An 8-Bit Analog-To-Digital Converter For Battery Operated Wireless Sensor Nodes, Marvin Wayne Suggs Jr.

Graduate Theses and Dissertations

Wireless sensing networks (WSNs) collect analog information transduced into the form of a voltage or current. This data is typically converted into a digital representation of the value and transmitted wirelessly using various modulation techniques. As the available power and size is limited for wireless sensor nodes in many applications, a medium resolution Analog-to-Digital Converter (ADC) is proposed to convert a sensed voltage with moderate speeds to lower power consumption. Specifications also include a rail-to-rail input range and minimized errors associated with offset, gain, differential nonlinearity, and integral nonlinearity. To achieve these specifications, an 8-bit successive approximation register ADC is …


Computational_Electromagnetic Modeling (Cem) Of Foliage Penetration (Fopen), Monica R. Jaramillo Apr 2021

Computational_Electromagnetic Modeling (Cem) Of Foliage Penetration (Fopen), Monica R. Jaramillo

Electrical and Computer Engineering ETDs

Foliage penetration (FOPEN) radar at lower frequencies (UHF, VHF) is a well-studied area with a wide set of contributions. However, there is growing interest in using higher Ku-band frequencies (12-18 GHz frequency range) for FOPEN. In particular, the reduced wavelength sizes (centimeters range) provide some key saliencies for developing more optimized foliage detection solutions. The disadvantage is that exploiting Ku-band for FOPEN is complicated because higher frequencies have much more pronounced scattering effects due to their smaller wavelengths. Despite these challenges, certain foliage characteristics and signal parameters can help improve electromagnetic (EM) wave penetration in the Ku-band such as foliage …


Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey Jan 2021

Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey

Browse all Theses and Dissertations

We consider the problem of compressive synthetic aperture radar (SAR) imaging with the goal of reconstructing SAR imagery in the presence of under sampled phase history. While this problem is typically considered in compressive sensing (CS) literature, we consider a variety of deep learning approaches where a deep neural network (DNN) is trained to form SAR imagery from limited data. At the cost of computationally intensive offline training, on-line test-time DNN-SAR has demonstrated orders of magnitude faster reconstruction than standard CS algorithms. A limitation of the DNN approach is that any change to the operating conditions necessitates a costly retraining …


Sar Object Recognition Based On Multi-Band And Multi-Polarization Simulation Image, Gu Yu, Zhang Qin, Xu Ying Jun 2020

Sar Object Recognition Based On Multi-Band And Multi-Polarization Simulation Image, Gu Yu, Zhang Qin, Xu Ying

Journal of System Simulation

Abstract: The object model was built based on Creator, and object texture-material mapping was performed by Vega TMM tool. The multi-band and multi-polarization SAR image database was built by visual simulation technology. A hybrid intelligent optimization algorithm was designed to optimize combination of band and polarization by genetic algorithm and binary particle optimization. Zernike moment features, Gabor wavelet coefficients, etc were extracted from original image and rectified image to make up of feature candidates, and the feature selection experiments were carried out by using multi-band and multi-polarization SAR images. Simulation results demonstrate that, building SAR image database through simulation …


Cmos Design Of An 8-Bit 1ms/S Successive Approximation Register Adc, Ameya Vivekanand Ganguli Jun 2019

Cmos Design Of An 8-Bit 1ms/S Successive Approximation Register Adc, Ameya Vivekanand Ganguli

Master's Theses

Rapid evolution of integrated circuit technologies has paved a way to develop smaller and energy efficient biomedical devices which has put stringent requirements on data acquisition systems. These implantable devices are compact and have a very small footprint. Once implanted these devices need to rely on non-rechargeable batteries to sustain a life span of up to 10 years. Analog-to-digital converters (ADCs) are key components in these power limited systems. Therefore, development of ADCs with medium resolution (8-10 bits) and sampling rate (1 MHz) have been of great importance.

This thesis presents an 8-bit successive approximation register (SAR) ADC incorporating an …


Evidence Of Instability In Previously-Mapped Landslides As Measured Using Gps, Optical, And Sar Data Between 2007 And 2017: A Case Study In The Portuguese Bend Landslide Complex, California, El Hachemi Y. Bouali, Thomas Oommen, Rüdiger Escobar-Wolf Apr 2019

Evidence Of Instability In Previously-Mapped Landslides As Measured Using Gps, Optical, And Sar Data Between 2007 And 2017: A Case Study In The Portuguese Bend Landslide Complex, California, El Hachemi Y. Bouali, Thomas Oommen, Rüdiger Escobar-Wolf

Michigan Tech Publications

Velocity dictates the destructive potential of a landslide. A combination of synthetic aperture radar (SAR), optical, and GPS data were used to maximize spatial and temporal coverage to monitor continuously-moving portions of the Portuguese Bend landslide complex on the Palos Verdes Peninsula in Southern California. Forty SAR images from the COSMO-SkyMed satellite, acquired between 19 July 2012 and 27 September 2014, were processed using Persistent Scatterer Interferometry (PSI). Eight optical images from the WorldView-2 satellite, acquired between 20 February 2011 and 16 February 2016, were processed using the Co-registration of Optically Sensed Images and Correlation (COSI-Corr) technique. Displacement measurements were …


Insar Simulations For Swot And Dual Frequency Processing For Topographic Measurements, Gerard Masalias Huguet Mar 2019

Insar Simulations For Swot And Dual Frequency Processing For Topographic Measurements, Gerard Masalias Huguet

Masters Theses

In Earth remote sensing precise characterization of the backscatter coefficient is important to extract valuable information about the observed target. A system that eliminates platform motion during near-nadir airborne observations is presented in this thesis, showing an improvement on the accuracy of measurements for a Ka- band scatterometer previously developed at Microwave Remote Sensing Laboratory (MIRSL). These very same results are used to simulate the reflectivity of such targets as seen from a spaceborne radar and estimate height errors based on mission-specific geometry. Finally, data collected from a dual-frequency airborne interferometer com- prised by the Ka-band system and an S-band …


Analysis Of Human Emf Exposure In 5g Cellular Systems, Imtiaz Nasim Jan 2019

Analysis Of Human Emf Exposure In 5g Cellular Systems, Imtiaz Nasim

Electronic Theses and Dissertations

Increasing concerns of communications at a frequency spectrum higher than 6 GHz have gained international alarm that suggests more research is needed before it is deployed successfully. In this context, in the first part of this thesis, we investigated the human electromagnetic field (EMF) exposure in indoor and outdoor environments from fifth-generation (5G) downlink communications and compared its impacts with the present cellular technologies considering the features that the 5G will likely adopt. The second part focuses on mitigation of human exposure for both indoor and outdoor environments with two different methods adopted. Our simulation results suggest that while the …


Microwave Detection Of Surface Breaking Cracks In Metallic Structures Under Heavy Corrosion And Paint, John Robert Gallion Jan 2019

Microwave Detection Of Surface Breaking Cracks In Metallic Structures Under Heavy Corrosion And Paint, John Robert Gallion

Masters Theses

"We live in the world of "aging infrastructures". In this environment, critical and heavily utilized infrastructure, i.e. ships, planes, bridges, etc., are operating at or beyond their designed age. Replacement is no longer an option and "retirement for cause" is the current approach to maintenance and replacement. Consequently, there is an ever-increasing demand for efficient and robust nondestructive evaluation (NDE) methods that can determine the physical health of these structures. Large structures, which are primarily made of metals, either steel or aluminum, are susceptible to high-stress cracking and corrosion. Stress-induced cracks in heavily corroded steel, used in bridges, railroads, storage …


Specific Air Range (Sar) And How To Estimate It, Nihad E. Daidzic Jan 2018

Specific Air Range (Sar) And How To Estimate It, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid Jan 2018

Leveraging 3d Models For Sar-Based Navigation In Gps-Denied Environments, Zachary A. Reid

Browse all Theses and Dissertations

This thesis considers the use of synthetic aperture radar (SAR) to provide absolute platform position information in scenarios where GPS signals may be degraded, jammed, or spoofed. Two algorithms are presented, and both leverage known 3D ground structure in an area of interest, e.g. provided by LIDAR data, to provide georeferenced position information to airborne SAR platforms. The first approach is based on the wide-aperture layover properties of elevated reflectors, while the second approach is based on correlating backprojected imagery with digital elevation imagery. Both of these approaches constitute the system we have designated: SARNAV. Building on 3D backprojection, localization …


Impact Of Near-Field-To-Far-Field Transformation On Sar Images Formed In An Indoor Non-Anechoic Environment, Jacob D. Compaleo Jan 2018

Impact Of Near-Field-To-Far-Field Transformation On Sar Images Formed In An Indoor Non-Anechoic Environment, Jacob D. Compaleo

Browse all Theses and Dissertations

This work investigates the impact of the near-field-to-far-field transformation (NFFFT) algorithm on phase history measurement collections completed in the Sensors and Signals Exploitation Laboratory (SSEL). SSEL is an indoor non-anechoic environ- ment that is at risk to some measurement interferences such as multiple bounces. Complete 360-degree phase history measurements of scale model aircraft are con- ducted at varying range values within the near-field limit. These measurements are calibrated with the Mie series scattering solution for a sphere. After calibration, the measurements are transformed using the NFFFT, with radar cross-section (RCS) estimated. RCS of the transformed data is compared with the …


Design And Simulation Of An 8-Bit Successive Approximation Register Charge-Redistribution Analog-To-Digital Converter, Sumit K. Verma Nov 2017

Design And Simulation Of An 8-Bit Successive Approximation Register Charge-Redistribution Analog-To-Digital Converter, Sumit K. Verma

Electrical Engineering Theses

The thesis initially investigates the history of the monolithic ADCs. The next chapter explores the different types of ADCs available in the market today. Next, the operation of a 4-bit SAR ADC has been studied. Based on this analysis, an 8-bit charge-redistribution SAR ADC has been designed and simulated with Multisim (National Instruments, Austin, TX). The design is divided into different blocks which are individually implemented and tested. Level-1 SPICE MOSFET models representative of 5μm devices were used wherever individual MOSFETs were used in the design. Finally, the power dissipation during the conversion period was also estimated. The supply voltage …


Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal Mar 2017

Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal

Masters Theses

A dual-frequency system is needed to better understand natural processes that constitute the environment and seasonal cycles of the Earth. A system working at two different wavelengths acquiring data simultaneously will give a valuable dataset since the conditions on the ground will be exactly the same. Hence, elements such as wind, soil moisture or any other changes on the ground will not interfere in the mea- surements. This thesis explains how an S-band radar was built and tested. Moreover, the experiments done with a Ka-band radar used as a scatterometer are explained as well as the data processing and analysis. …


Effects Of The Kinematic Model On Forward-Model Based Spotlight Sar Ecm, David T. Pyles Jan 2017

Effects Of The Kinematic Model On Forward-Model Based Spotlight Sar Ecm, David T. Pyles

Browse all Theses and Dissertations

Spotlight synthetic aperture radar (SAR) provides a high-resolution remote image formation capability for airborne platforms. SAR image formation processes exploit the amplitude, time, and frequency shifts that occur in the transmitted waveform due to electromagnetic propagation and scattering. These shifts are predictable through the SAR forward model which is dependent on the waveform parameters and emitter flight path. The approach to develop an electronic countermeasure (ECM) system that is founded on the SAR forward model implies that the ECM system should alter the radar's waveform in a manner that produces the same amplitude, time, and frequency shifts that a real …


Scaled Synthetic Aperture Rader Development, Jason Garvey Schray Sep 2016

Scaled Synthetic Aperture Rader Development, Jason Garvey Schray

Master's Theses

Several previous Cal Poly thesis projects involve synthetic aperture radar (SAR), automatic target recognition (ATR), and tracking. SAR data was either accessed from a publicly available database or generated using complex computer modeling software. The motivation for this dual thesis project is to design and construct a scaled SAR system to support Cal Poly radar projects. Ideally this is a low-cost, high resolution SAR architecture that produces raw range Doppler data for any desired target area. To that end, a scaled SAR system was successfully designed, built, and tested. The current SAR system, however, does not perform azimuthal compression and …


Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis Dec 2015

Uplift Of Shoreline Regions On Pagai Island Due To The September 12, 2007 Mw 8.4 Earthquake Captured By Sar Image, Ashar Muda Lubis

Makara Journal of Technology

At least 25 people were killed by the September 12, 2007 Mw 8.4 Bengkulu earthquake, and many buildings were destroyed in Bengkulu and West Sumatra provinces. It is very important to estimate the earth surface deformation due to the earthquake to understand the rupture size and its process. The aim of this research is to estimate the shoreline change and vertical displacement on Pagai Island associated with the September 12, 2007 Mw 8.4 Bengkulu earthquake. The intensity of ALOS-PALSAR satellite images is used to access the pattern of displacement. The result shows that Pagai Island demonstrated huge uplift due to …


Scaled Synthetic Aperture Radar System Development, Ryan K. Green Dec 2015

Scaled Synthetic Aperture Radar System Development, Ryan K. Green

Master's Theses

Synthetic Aperture Radar (SAR) systems generate two dimensional images of a target area using RF energy as opposed to light waves used by cameras. When cloud cover or other optical obstructions prevent camera imaging over a target area, SAR can be substituted to generate high resolution images. Linear frequency modulated signals are transmitted and received while a moving imaging platform traverses a target area to develop high resolution images through modern digital signal processing (DSP) techniques. The motivation for this joint thesis project is to design and construct a scaled SAR system to support Cal Poly radar projects. Objectives include …


Extending Gr While Moving Up To Supersonic Speeds Poses Challenges Requiring Innovations, Nihad E. Daidzic Oct 2015

Extending Gr While Moving Up To Supersonic Speeds Poses Challenges Requiring Innovations, Nihad E. Daidzic

Aviation Department Publications

Achieving true global range requires new ideas in lightweight aircraft structures, progress in transonic and supersonic aerodynamics and breakthroughs in low-SFC propulsion.


Synthetic Aperture Radar: Rapid Detection Of Target Motion In Matlab, Daniel S. Kassen May 2015

Synthetic Aperture Radar: Rapid Detection Of Target Motion In Matlab, Daniel S. Kassen

Master's Theses

Synthetic Aperture Radar (SAR) has come into widespread use in several civilian and military applications. The focus of this paper is the military application of imaging point targets captured by an airborne SAR platform. Using the traditional SAR method of determining target motion by analyzing the difference between subsequent images takes a relatively large amount of processing resources. Using methods in this thesis, target motion can be estimated before even a single image is obtained, reducing the amount of time and power used by a significantly large amount. This thesis builds on work done by Brain Zaharri and David So. …


Mapping Regional Inundation With Spaceborne L-Band Sar, Bruce Chapman, Kyle Macdonald, Masanobu Shimada, Ake Rosenqvist, Ronny Schroeder, Laura Hess Apr 2015

Mapping Regional Inundation With Spaceborne L-Band Sar, Bruce Chapman, Kyle Macdonald, Masanobu Shimada, Ake Rosenqvist, Ronny Schroeder, Laura Hess

Publications and Research

Shortly after the launch of ALOS PALSAR L-band SAR by the Japan Space Exploration Agency (JAXA), a program to develop an Earth Science Data Record (ESDR) for inundated wetlands was funded by NASA. Using established methodologies, extensive multi-temporal L-band ALOS ScanSAR data acquired bi-monthly by the PALSAR instrument onboard ALOS were used to classify the inundation state for South America for delivery as a component of this Inundated Wetlands ESDR (IW-ESDR) and in collaboration with JAXA’s ALOS Kyoto and Carbon Initiative science programme. We describe these methodologies and the final classification of the inundation state, then compared this with results …


Uav Navigation And Radar Odometry, Eric Blaine Quist Mar 2015

Uav Navigation And Radar Odometry, Eric Blaine Quist

Theses and Dissertations

Prior to the wide deployment of robotic systems, they must be able to navigate autonomously. These systems cannot rely on good weather or daytime navigation and they must also be able to navigate in unknown environments. All of this must take place without human interaction. A majority of modern autonomous systems rely on GPS for position estimation. While GPS solutions are readily available, GPS is often lost and may even be jammed. To this end, a significant amount of research has focused on GPS-denied navigation. Many GPS-denied solutions rely on known environmental features for navigation. Others use vision sensors, which …


Performance Prediction Of Quantization Based Automatic Target Recognition Algorithms, Matthew Steven Horvath Jan 2015

Performance Prediction Of Quantization Based Automatic Target Recognition Algorithms, Matthew Steven Horvath

Browse all Theses and Dissertations

The difficulty of designing automatic target recognition (ATR) systems is that there are many sources of potential variation in the data, often referred to as operating conditions (OCs). Typical evaluation methodologies rely on empirical simulations on fixed datasets, where it can be difficult to fully sample the variations the algorithm will see in application. Here we focus on analytic performance prediction approaches to quantization based algorithms where the sources of variation are assumed conditionally independent. We have focused on three algorithms in particular: multinomial pattern matching (MPM), quantized grayscale matching (QGM), and a quantized mean-squared error approach (QMSE). The first …


Developments In Lfm-Cw Sar For Uav Operation, Craig Lee Stringham Dec 2014

Developments In Lfm-Cw Sar For Uav Operation, Craig Lee Stringham

Theses and Dissertations

Opportunities to use synthetic aperture radar (SAR) in scientific studies and military operations are expanding with the development of small SAR systems that can be operated on small unmanned air vehicles (UAV)s. While the nimble nature of small UAVs make them an attractive platform for many reasons, small UAVs are also more prone to deviate from a linear course due autopilot errors and external forces such as turbulence and wind. Thus, motion compensation and improved processing algorithms are required to properly focus the SAR images. The work of this dissertation overcomes some of the challenges and addresses some of the …


Monostatic Airborne Synthetic Aperture Radar Using Commercial Wimax Transceivers In The License-Exempt Spectrum, Kai Liu Nov 2014

Monostatic Airborne Synthetic Aperture Radar Using Commercial Wimax Transceivers In The License-Exempt Spectrum, Kai Liu

Electronic Thesis and Dissertation Repository

The past half-century witnessed an evolution of synthetic aperture radar (SAR). Boosted by digital signal processing (DSP), a variety of SAR imaging algorithms have been developed, in which the wavenumber domain algorithm is mature for airborne SAR and independent of signal waveforms. Apart from the algorithm development, there is a growing interest in how to acquire the raw data of targets’ echoes before the DSP for SAR imaging in a cost-effective way. For the data acquisition, various studies over the past 15 years have shed light on utilizing the signal generated from the ubiquitous broadband wireless technology – orthogonal frequency …


Recursive-Ransac: A Novel Algorithm For Tracking Multiple Targets In Clutter, Peter C. Niedfeldt Jul 2014

Recursive-Ransac: A Novel Algorithm For Tracking Multiple Targets In Clutter, Peter C. Niedfeldt

Theses and Dissertations

Multiple target tracking (MTT) is the process of identifying the number of targets present in a surveillance region and the state estimates, or track, of each target. MTT remains a challenging problem due to the NP-hard data association step, where unlabeled measurements are identified as either a measurement of an existing target, a new target, or a spurious measurement called clutter. Existing techniques suffer from at least one of the following drawbacks: divergence in clutter, underlying assumptions on the number of targets, high computational complexity, time-consuming implementation, poor performance at low detection rates, and/or poor track continuity. Our goal is …