Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Low Cost/ High Precision Flight Dynamics Estimation Using The Square-Root Unscented Kalman Filter, Trevor H. Paulsen Oct 2009

Low Cost/ High Precision Flight Dynamics Estimation Using The Square-Root Unscented Kalman Filter, Trevor H. Paulsen

Theses and Dissertations

For over a decade, Brigham Young University's Microwave Earth Remote Sensing (MERS) team has been developing SAR systems and SAR processing algorithms. In order to create the most accurate image reconstruction algorithms, detailed aircraft motion data is essential. In 2008, the MERS team purchased a costly inertial measurement unit (IMU) coupled with a high precision global positioning system (GPS) from NovAtel, Inc. In order to lower the cost of obtaining detailed motion measurements, the MERS group decided to build a system that mimics the capability the NovAtel system as closely as possible for a much lower cost. As a first …


Synthetic Aperture Radar Imaging Simulated In Matlab, Matthew Schlutz Jun 2009

Synthetic Aperture Radar Imaging Simulated In Matlab, Matthew Schlutz

Master's Theses

This thesis further develops a method from ongoing thesis projects with the goal of generating images using synthetic aperture radar (SAR) simulations coded in MATLAB. The project is supervised by Dr. John Saghri and sponsored by Raytheon Space and Airborne Systems. SAR is a type of imaging radar in which the relative movement of the antenna with respect to the target is utilized. Through the simultaneous processing of the radar reflections over the movement of the antenna via the range Doppler algorithm (RDA), the superior resolution of a theoretical wider antenna, termed synthetic aperture, is obtained. The long term goal …


Target Tracking Using Various Filters In Synthetic Aperture Radar Data And Imagery, Jessica L. Kiefer May 2009

Target Tracking Using Various Filters In Synthetic Aperture Radar Data And Imagery, Jessica L. Kiefer

Master's Theses

This thesis explores the use and accuracy of several discrete-time image filters for the purpose of target tracking in Synthetic Aperture Radar imagery. Both extended targets and point targets are used for tracking, showing the need for different types of filters for each target type.

Monte Carlo analysis is performed on the results of the extended target filter results to determine the absolute mean-squared error between the filter prediction of the target centroid and the actual location of the target centroid. Two different filters were chosen for the extended target: Kalman and H Infinity.

Both the Kalman and H Infinity …


Design Of A Continuous-Wave Synthetic Aperture Radar System With Analog Dechirp, Matthew C. Edwards Mar 2009

Design Of A Continuous-Wave Synthetic Aperture Radar System With Analog Dechirp, Matthew C. Edwards

Theses and Dissertations

This thesis presents a design methodology for continuous wave (CW) synthetic aperture radar (SAR) systems. The focus is on design considerations specific to small, low-power systems suitable for operation on small aircraft and unmanned aerial vehicles (UAVs). Well-known results which have been derived in other works, such as the radar equation, are explained in the context of low-power, CW systems. Additionally, design issues unique to CW SAR are addressed and the results generalized. A method for controlling feedthrough between antennas is developed, and the resulting limitations on swath width are discussed. Methods are developed which allow an engineer to design …


Three-Dimensional Target Modeling With Synthetic Aperture Radar, John R. Hupton Jan 2009

Three-Dimensional Target Modeling With Synthetic Aperture Radar, John R. Hupton

Master's Theses

Conventional Synthetic Aperture Radar (SAR) offers high-resolution imaging of a target region in the range and cross-range dimensions along the ground plane. Little or no data is available in the range-altitude dimension, however, and target functions and models are limited to two-dimensional images. This thesis first investigates some existing methods for the computation of target reflectivity data in the deficient elevation domain, and a new method is then proposed for three-dimensional (3-D) SAR target feature extraction.

Simulations are implemented to test the decoupled least-squares technique for high-resolution spectral estimation of target reflectivity, and the accuracy of the technique is assessed. …