Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Engineering

The Role Of Extracellular Polymeric Substances In The Accumulation And Transport Of Polystyrene Nanoparticles In Biofilms, Joann Marie Rodríguez Suarez Mar 2022

The Role Of Extracellular Polymeric Substances In The Accumulation And Transport Of Polystyrene Nanoparticles In Biofilms, Joann Marie Rodríguez Suarez

Doctoral Dissertations

With the increasing number of nanotechnology applications, it is reasonable to expect nanoparticles to be ubiquitous in biofilms found in natural and engineered aquatic systems. We studied the impact of the degree of cross-linking on the deposition and diffusion of polystyrene nanoparticles (NPs) in alginate model biofilm matrices in the presence and absence of calcium cross-linkers using image correlation methods and single particle tracking. We found that cross-linking increases the viscoelasticity and hydration of the polymeric matrix and leads to structural changes that can restrict and alter the diffusive behavior of NPs, but the magnitude of the effects on diffusion …


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration. In the case of …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Nanocomposite Polymer Networks For Reconfigurable Materials, Adam W. Hauser Nov 2017

Nanocomposite Polymer Networks For Reconfigurable Materials, Adam W. Hauser

Doctoral Dissertations

This thesis broadly aims to design reconfigurable materials through complementary combinations of nanoparticles and polymers. Understanding nanoparticle dispersion pathways and mechanisms is a critical first step in any polymer nanocomposite work as it continues to be a non-trivial subject. To this end, Chapter 2 describes a simple method to control nanoparticle dispersion within polymer melts by photografting random copolymers to selectively reactive nanoparticle ligands. The chapters following focus on harnessing the functionality of well dispersed nanocomposite networks to elicit macro-scale responses. Chapter 3 exploits the unique optical properties of gold nanoparticles in combination with thermally responsive hydrogels and liquid crystalline …


Effects Of Sulfidation On The Deposition And Detachment Of Silver Nanoparticles, Joseph Murphy Jan 2017

Effects Of Sulfidation On The Deposition And Detachment Of Silver Nanoparticles, Joseph Murphy

Environmental & Water Resources Engineering Masters Projects

The transformation of silver nanoparticles (AgNPs) due to environmental factors can play a role in their fate and transport in aquatic systems. Sulfidation has the potential to alter these particles’ physio-chemical properties and their subsequent mobilization in aquatic environments. The water chemistry (e.g. pH, dissolved organic carbon) of these systems can also change the behavior of AgNPs. To better understand the effects of sulfidation on the characteristics and deposition of AgNPs, techniques such as quartz crystal microgravimetry (QCM) and dynamic light scattering (DLS) were used. In this study, AgNPs with two different ligand types, Polyvinylpyrrolidone (PVP)-capped AgNPs (PVP-AgNPs) and Polyethylene …


Tailoring Nanoparticles And Polymers For Cooperative Interfacial And Surface Interactions, Irem Bolukbasi Mar 2015

Tailoring Nanoparticles And Polymers For Cooperative Interfacial And Surface Interactions, Irem Bolukbasi

Doctoral Dissertations

This thesis describes the synthesis of chemically functionalized nanoparticles and their behavior at interfaces and in conjunction with polymers. Solid-liquid, liquid-liquid, and air-liquid interfaces are useful platforms for studying nanoparticle assembly, especially when nanoparticles are functionalized to enable their segregation to the interface. At the liquid-liquid interface, double emulsions droplets, both oil-in-water-in-oil and water-in-oil-in-water, stabilized with nanoparticles were prepared. This involved gold nanoparticles stabilizing oil-in-water droplets, and CdSe quantum dots stabilizing water-in-oil droplets. These double emulsion droplets were by simply shaking to give polydisperse droplets, or in a well-defined fashion by microcapillary flow focusing. When nanoparticle-stabilized double emulsions were sized …


Nanomedicine, Mark Tuominen Jan 2015

Nanomedicine, Mark Tuominen

Nanotechnology Teacher Summer Institutes

An overview of nanomedicine. The end goal of nanomedicine is improved diagnostics, treatment and prevention of disease. Nanotechnology holds key to a number of recent and future breakthroughs in medicine.


Porous Metal Oxide Materials Through Novel Fabrication Procedures, Nicholas Hendricks Sep 2012

Porous Metal Oxide Materials Through Novel Fabrication Procedures, Nicholas Hendricks

Open Access Dissertations

Porous metal oxide materials, particularly those comprised of silica or titania, find use in many applications such as low-k dielectric materials for microelectronics as well as chemical sensors, micro/nanofluidic devices, and catalyst substrates. For this dissertation, the focus will be on the processing of porous metal oxide materials covering two subjects: hierarchical porosity exhibited over two discrete length scales and incorporation of functional nanomaterials. To generate the porous silica materials, the technique of supercritical carbon dioxide infusion (scCO2) processing was heavily relied upon. Briefly, the scCO2 infusion processing utilizes phase selective chemistries within a pre-organized amphiphilic block copolymer template using …


Modeling And Simulation Of Nanoparticle Formation In Microemulsion Droplets, Sreekumar R. Kuriyedath Sep 2011

Modeling And Simulation Of Nanoparticle Formation In Microemulsion Droplets, Sreekumar R. Kuriyedath

Open Access Dissertations

Semiconductor nanocrystals, also known as quantum dots (QDs), are an important class of materials that are being extensively studied for a wide variety of potential applications, such as medical diagnostics, photovoltaics, and solid-state lighting. The optical and electronic properties of these nanocrystals are different from their bulk properties and depend on the size of the QDs. Therefore an important requirement in their synthesis is a proper control on the final nanoparticle size. Recently, a technique has been developed for synthesizing zinc selenide (ZnSe) QDs using microemulsion droplets as templates. In these systems, a fixed amount of a reactant is dissolved …


Sorption Of Bovine Serum Albumin On Nano And Bulk Oxide Particles, Lei Song Jan 2010

Sorption Of Bovine Serum Albumin On Nano And Bulk Oxide Particles, Lei Song

Masters Theses 1911 - February 2014

Manufactured oxide nanoparticles (NPs) have large production and widespread applications, which will inevitably enter the environment. NPs can interact with proteins in living beings due to the fact that NPs can transport into blood or across cell membranes into cells. Conformational change of protein molecules after sorption on oxide NPs has been reported. Therefore, it is important to understand the adsorption mechanism of protein onto oxide NPs surfaces. Although few works have reported protein adsorption behaviors, a general systematic comparison of the effects of particle size and surface groups on protein adsorption by widely studied NPs still needs to be …


Functionalized Nanoparticles For Biological Imaging And Detection Applications, Bing C Mei Feb 2009

Functionalized Nanoparticles For Biological Imaging And Detection Applications, Bing C Mei

Doctoral Dissertations 1896 - February 2014

Semiconductor quantum dots (QDs) and gold nanoparticles (AuNPs) have gained tremendous attention in the last decade as a result of their size-dependent spectroscopic properties. These nanoparticles have been a subject of intense study to bridge the gap between macroscopic and atomic behavior, as well as to generate new materials for novel applications in therapeutics, biological sensing, light emitting devices, microelectronics, lasers, and solar cells. One of the most promising areas for the use of these nanoparticles is in biotechnology, where their size-dependent optical properties are harnessed for imaging and sensing applications. However, these nanoparticles, as synthesized, are often not stable …


Synthesize A Nanoscale Ferrofluid, Rob Snyder Jan 2007

Synthesize A Nanoscale Ferrofluid, Rob Snyder

Nanotechnology Teacher Summer Institutes

The chemical synthesis of a ferrofluid is a nanoscale science activity that originally appears in the Journal of Chemical Education. Access to the following website requires a subscription to the journal. J. Chem. Educ., 76, 943-948 (1999). The article was authored by Jonathan Breitzer and George Lisensky.