Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 483

Full-Text Articles in Engineering

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler May 2021

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler

Mechanical Engineering Undergraduate Honors Theses

The overall goal of this research project is to synthesize iron core, silica capped nanoparticles that, when they are exposed to a particular magnetic field, will react by increasing in temperature and emitting substantial thermal output. They will be injected into the human body for biological benefit by targeted thermal radiation. Once in the human body, ideally, they will be able to target a specific area, and then a magnetic field will be applied to induce thermal output through the process of hyperthermia. As the nanoparticles emit heat, they will mimic the natural bodily behavior seen by way of hyperthermia ...


Impact Of Particle Surface Charge Heterogeneity On Deposition Onto Flat Surfaces And Transport In Porous Media, Thompson Delon Apr 2021

Impact Of Particle Surface Charge Heterogeneity On Deposition Onto Flat Surfaces And Transport In Porous Media, Thompson Delon

Civil and Environmental Engineering Theses, Dissertations, and Student Research

Biological and non-biological natural colloids are anisotropic and ubiquitously exist in groundwater. Previously in colloid transport modelling, colloids are assumed to be homogenous for simplification, whether in shape or surface charge. More research has been done to incorporate surface heterogeneity in the transport experiment, i.e., surface charge heterogeneity on collector in column experiment. However, few studies have been done on surface heterogeneity on colloids themselves.

In this dissertation, Janus particles with different surface charge was developed to model surface heterogeneity on colloids. The interaction energy between Janus particle and flat surfaces was analyzed through DLVO simulation. It was discovered ...


Volcanic Emissions And Atmospheric Pollution: A Study Of Nanoparticles, Erika M. Trejos, Luis F. O. Silva, James C. Hower, Eriko M. M. Flores, Carlos Mario González, Jorge E. Pachón, Beatriz H. Aristizábal Mar 2021

Volcanic Emissions And Atmospheric Pollution: A Study Of Nanoparticles, Erika M. Trejos, Luis F. O. Silva, James C. Hower, Eriko M. M. Flores, Carlos Mario González, Jorge E. Pachón, Beatriz H. Aristizábal

Center for Applied Energy Research Faculty Publications

The influence of emissions of an active volcano on the composition of nanoparticles and ultrafine road dust was identified in an urban area of the Andes. Although many cities are close to active volcanoes, few studies have evaluated their influence in road dust composition. Air quality in urban areas is significantly affected by non-exhaust emissions (e.g. road dust, brake wear, tire wear), however, natural sources such as volcanoes also impact the chemical composition of the particles. In this study, elements from volcanic emissions such as Si > Al > Fe > Ca > K > Mg, and Si—Al with K were identified as ...


The Surface Chemistry And Structure Of Colloidal Lead Halide Perovskite Nanocrystals, Sara R. Smock, Yunhua Chen, Aaron J. Rossini, Richard L. Brutchey Feb 2021

The Surface Chemistry And Structure Of Colloidal Lead Halide Perovskite Nanocrystals, Sara R. Smock, Yunhua Chen, Aaron J. Rossini, Richard L. Brutchey

Chemistry Publications

Since the initial discovery of colloidal lead halide perovskite nanocrystals, there has been significant interest placed on these semiconductors because of their remarkable optoelectronic properties, including very high photoluminescence quantum yields, narrow size- and composition-tunable emission over a wide color gamut, defect tolerance, and suppressed blinking. These material attributes have made them attractive components for next-generation solar cells, light emitting diodes, low-threshold lasers, single photon emitters, and X-ray scintillators. While a great deal of research has gone into the various applications of colloidal lead halide perovskite nanocrystals, comparatively little work has focused on the fundamental surface chemistry of these materials ...


Elucidating The Location Of Cd2+ In Post-Synthetically Treated Inp Quantum Dots Using Dynamic Nuclear Polarization 31p And 113cd Solid-State Nmr Spectroscopy, Michael P. Hanrahan, Jennifer L. Stein, Nayon Park, Brandi M. Cossairt, Aaron J. Rossini Jan 2021

Elucidating The Location Of Cd2+ In Post-Synthetically Treated Inp Quantum Dots Using Dynamic Nuclear Polarization 31p And 113cd Solid-State Nmr Spectroscopy, Michael P. Hanrahan, Jennifer L. Stein, Nayon Park, Brandi M. Cossairt, Aaron J. Rossini

Chemistry Publications

Indium phosphide quantum dots (InP QD) are a promising alternative to traditional QD materials that contain toxic heavy elements such as lead and cadmium. However, InP QD obtained from colloidal synthesis are often plagued by poor photoluminescence quantum yields (PL-QYs). In order to improve the PL-QY of InP QD, a number of post-synthetic treatments have been devised. Recently, it has been shown that InP post-synthetically treated with Lewis acid metal divalent cations (M-InP) exhibit enhanced PL-QY; however, the molecular structure and mechanism behind the improved PL-QY are not fully understood. To determine the surface structure of M-InP QD, dynamic nuclear ...


Revealing The Surface Structure Of Cdse Nanocrystals By Dynamic Nuclear Polarization-Enhanced 77se And 113cd Solid-State Nmr Spectroscopy, Yunhua Chen, Rick W. Dorn, Michael P. Hanrahan, Lin Wei, Rafael Blome-Fernández, Alan M. Medina-Gonzalez, Marquix A. S. Adamson, Anne H. Flintgruber, Javier Vela, Aaron J. Rossini Jan 2021

Revealing The Surface Structure Of Cdse Nanocrystals By Dynamic Nuclear Polarization-Enhanced 77se And 113cd Solid-State Nmr Spectroscopy, Yunhua Chen, Rick W. Dorn, Michael P. Hanrahan, Lin Wei, Rafael Blome-Fernández, Alan M. Medina-Gonzalez, Marquix A. S. Adamson, Anne H. Flintgruber, Javier Vela, Aaron J. Rossini

Chemistry Publications

Dynamic nuclear polarization (DNP) solid-state NMR (SSNMR) spectroscopy was used to obtain detailed surface structures of zinc blende CdSe nanocrystals (NCs) with plate or spheroidal morphologies and which are capped by carboxylic acid ligands. 1D 113Cd and 77Se cross-polarization magic angle spinning (CPMAS) NMR spectra revealed distinct signals from Cd and Se atoms on the surface of the NCs, and those residing in bulk-like environments below the surface. 113Cd cross-polarization magic-angle-turning (CP-MAT) experiments identified CdSe3O, CdSe2O2, and CdSeO3 Cd coordination environments on the surface of the NCs, where the oxygen atoms are presumably from coordinated carboxylate ligands. The sensitivity gain ...


Analysis Of Data To Evaluate The Performance Of Air Filters Used For Filtering Nanoscale Particles Generated By Smoke, Pascal J. Wagemaker Jan 2021

Analysis Of Data To Evaluate The Performance Of Air Filters Used For Filtering Nanoscale Particles Generated By Smoke, Pascal J. Wagemaker

Honors College Theses

The main goal of this research project is to determine the effectiveness of commercially available air filters and to compare different kinds of commercially available air filters in certain categories. With recent record-breaking wildfires and the Covid-19 pandemic, research on the effects and features of nanoparticles has become increasingly important. Inhalation of nanoparticles in smoke can result in severe health effects on humans, affecting especially the respiratory system. As nanoparticles can pass through cell membranes, absorption occurs rapidly and affects many different parts and functions of the human body. While air filters are an effective method of reducing small-sized particles ...


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities ...


Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston Dec 2020

Controlled Membrane Remodeling By Nanospheres And Nanorods: Experiments Targeting The Design Principles For Membrane-Based Materials, Sarah Zuraw-Weston

Doctoral Dissertations

In this thesis we explore two experimental systems probing the interactions of nanoparticles with lipid bilayer membranes. Inspired by the ability of cell membranes to alter their shape in response to bound particles, we report two experimental studies: one of nanospheres the other of long, slender nano-rods binding to lipid bilayer vesicles and altering the membrane shape. Our work illuminates the role of particle geometry, particle concentration, adhesion strength and membrane tension in how membrane morphology is determined. We combine giant unilamellar vesicles with oppositely charged nanoparticles, carefully tuning adhesion strength, membrane tension and particle concentration.

In the case of ...


Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez Dec 2020

Direct Solar Absorption Nanoparticle Doped Membranes For A Hybrid Membrane Distillation And Photovoltaic Cell, Alejandro Espejo Sanchez

Boise State University Theses and Dissertations

The growing demand for clean water supplies is driving the need for an innovative approach of water desalination. Developing a method for treating water with high salinities is possible with membrane distillation (MD). Additionally, MD is very attractive for pairing with solar energy due to the low temperature requirements. The integration of a membrane distillation system with a photovoltaic (PV) system will result in the co-production of electricity and clean water, thereby improving the economics of MD. Such a hybrid system will directly absorb thermal energy in the membrane for desalination while taking advantage of the spectrally selective nature of ...


Electrochemical Synthesis Of Nanosized Iron Oxide–Alumina System, A. F. Dresvyannikov, I. O. Grigoryeva, L. R. Khayrullina Oct 2020

Electrochemical Synthesis Of Nanosized Iron Oxide–Alumina System, A. F. Dresvyannikov, I. O. Grigoryeva, L. R. Khayrullina

Journal of Advanced Ceramics

An electrochemical method for the synthesis of complex dispersed oxide system Al2O3–Fe2O3, based on the combined aluminum and iron anodic dissolution in aqueous solution containing chloride ions, has been suggested. The phase composition and morphology of Al2O3–Fe2O3 dispersed precipitate have been investigated by means of X-ray fluorescence, X-ray diffraction (XRD), and scanning electron microscopy (SEM). The influence of the electrolysis mode on the characteristics of the synthesized oxide system has been shown. It is found that the direct current (DC) mode allows us to adjust the ...


Rapid Synthesis Of Nanocrystalline Sno2 By A Microwave-Assisted Combustion Method, Lajapathi Chellappan Nehru, Chinnappanadar Sanjeeviraja Oct 2020

Rapid Synthesis Of Nanocrystalline Sno2 By A Microwave-Assisted Combustion Method, Lajapathi Chellappan Nehru, Chinnappanadar Sanjeeviraja

Journal of Advanced Ceramics

A facile and rapid microwave-assisted combustion method was used to synthesis nanocrystalline SnO2 powders, through dissolution of tin nitrate (as oxidant) and glycine (as fuel) as starting materials and water as solvent and then heating the resulting solution in a microwave oven. The study suggested that application of microwave heating to produce the nanosize SnO2 was achieved in a few minutes. The structure and morphology of the as-prepared combustion products were investigated by means of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) and Raman spectra confirmed the formation of tetragonal rutile ...


Lubrication Of Dry Sliding Metallic Contacts By Chemically Prepared Functionalized Graphitic Nanoparticles, Suprakash Samanta, Santosh Singh, Rashmi R. Sahoo Oct 2020

Lubrication Of Dry Sliding Metallic Contacts By Chemically Prepared Functionalized Graphitic Nanoparticles, Suprakash Samanta, Santosh Singh, Rashmi R. Sahoo

Friction

Understanding the mechanism of precision sliding contacts with thin, adherent solid nano lubricating particle films is important to improve friction and wear behavior and ensure mechanical devices have long service lifetimes. Herein, a facile and multistep approach for the preparation of graphene oxide (GO) is presented. Subsequently, surface modification of as-synthesized GO with octadecyl amine (ODA) is performed to prepare hydrophobic GO-ODA and with 6-amino-4-hydroxy-2-naphthalenesulfonic acid (ANS) to prepare amphoteric GO-ANS through a nucleophilic addition reaction. X-ray diffraction and ultraviolet-visible, Fourier transform infrared, and Raman spectroscopy provide significant information about the reduction of oxygen functionalities on GO and the introduction ...


Molecular Dynamics Simulation Of Effects Of Nanoparticles On Frictional Heating And Tribological Properties At Various Temperatures, Chengzhi Hu, Jizu Lv, Minli Bai, Xiaoliang Zhang, Dawei Tang Oct 2020

Molecular Dynamics Simulation Of Effects Of Nanoparticles On Frictional Heating And Tribological Properties At Various Temperatures, Chengzhi Hu, Jizu Lv, Minli Bai, Xiaoliang Zhang, Dawei Tang

Friction

The temperature of a friction pair exerts considerable influence on the tribological behavior of a system. In two cases, one with and the other without Cu (copper) nanoparticles, the temperature increase in friction pairs caused by frictional heating and its tribological properties at various temperatures are studied by using the molecular dynamics approach. The results show that temperature distribution and surface abrasion are significantly improved by the presence of Cu nanoparticles. This is one of the reasons for the improvements in tribological properties achieved in the presence of nanoparticles. The temperature and range of influence of frictional heating for the ...


Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva Oct 2020

Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva

Friction

Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that ...


Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva Oct 2020

Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva

Friction

Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that the presence of ...


Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Effect Of Nanoparticles On The Performance Of Magnetorheological Fluid Damper During Hard Turning Process, P. Sam Paul, J. Agnelo Iasanth, X. Ajay Vasanth, A. S. Varadarajan Oct 2020

Effect Of Nanoparticles On The Performance Of Magnetorheological Fluid Damper During Hard Turning Process, P. Sam Paul, J. Agnelo Iasanth, X. Ajay Vasanth, A. S. Varadarajan

Friction

Magnetorheological (MR) fluid damper which allows the damping characteristics of the damper to be continuously controlled by varying the magnetic field is extensively used in metal cutting to suppress tool vibration. Even though magnetorhelogical fluids have been successful in reducing tool vibration, durability of magnetorhelogical fluids remains a major challenge in engineering sector. Temperature effect on the performance of magnetorhelogical fluids over a prolonged period of time is a major concern. In this paper, an attempt was made to reduce temperature and to improve viscosity of magnetorhelogical fluids by infusing nanoparticles along with MR fluids. Aluminium oxide and titanium oxide ...


Friction Of Low-Dimensional Nanomaterial Systems, Wanlin Guo, Jun Yin, Hu Qiu, Yufeng Guo, Hongrong Wu, Minmin Xue Oct 2020

Friction Of Low-Dimensional Nanomaterial Systems, Wanlin Guo, Jun Yin, Hu Qiu, Yufeng Guo, Hongrong Wu, Minmin Xue

Friction

When material dimensions are reduced to the nanoscale, exceptional physical mechanics properties can be obtained that differ significantly from the corresponding bulk materials. Here we review the physical mechanics of the friction of low-dimensional nanomaterials, including zero-dimensional nanoparticles, one- dimensional multiwalled nanotubes and nanowires, and two-dimensional nanomaterials—such as graphene, hexagonal boron nitride (h-BN), and transition-metal dichalcogenides—as well as topological insulators. Nanoparticles between solid surfaces can serve as rolling and sliding lubrication, while the interlayer friction of multiwalled nanotubes can be ultralow or significantly high and sensitive to interwall spacing and chirality matching, as well as the tube materials ...


Al2o3 Nanofluids As Heat Transfer Liquids In Automotives, M. Yasaswi, R.V. Prasad, T.Jayanda Kumar Sep 2020

Al2o3 Nanofluids As Heat Transfer Liquids In Automotives, M. Yasaswi, R.V. Prasad, T.Jayanda Kumar

International Journal of Mechanical and Industrial Engineering

The thermal conductivity of heating or cooling fluids is a very important property in the development of energy efficient heat transfer systems, which is one of the important needs of many industries. However, low thermal conductivity is a primary limitation in developing energy-efficient heat transfer fluids that are required for cooling purposes. Nanofluids are nanotechnology-based heat transfer fluids that are engineered by stably dispersing nanometer-sized (below 100nm) solid particles (such as ceramics, metals, alloys, semiconductors, nanotubes, and composite particles) in conventional heat transfer fluids (such as water, oil, diesel, ethylene glycol and mixtures) at relatively low particle volume concentrations. These ...


Effect Of Nano Silica Fillers On Mechanical And Abrasive Wear Behaviour Of Vinyl Ester Resin, R. Elansezhian, L. Saravanan Aug 2020

Effect Of Nano Silica Fillers On Mechanical And Abrasive Wear Behaviour Of Vinyl Ester Resin, R. Elansezhian, L. Saravanan

International Journal of Applied Research in Mechanical Engineering

In this paper, influence of different nano particles such as ……….. on the wear behavior of a vinyl ester resin composites is reported. Nano silica particles, functionalized with a bi-functional coupling agent, methacyloxypropyl-trimethoxysilane (MPS) is found to improve the wear resistance as well as the tensile strength of the fabricated vinyl ester resin nano composite. The uniform particle dispersion and chemical bond between nano particle and vinyl ester resin was observed. Wear behavior of the resin with silica, zinc oxide and alumina nano particles were studied using taber abrasive wear tester. Wear test was conducted for different load conditions and distances ...


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx ...


Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar Jul 2020

Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar

Center of Membrane Sciences Faculty Publications

Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability ...


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and ...


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx ...


In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane Jun 2020

In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane

Life Sciences Faculty Publications

Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic ...


Understanding The Effects Of Plasma Assisted Nanoparticle Deposition For The Enhancement Of Optical And Electrochemical Response, Apurva Sonawane Jun 2020

Understanding The Effects Of Plasma Assisted Nanoparticle Deposition For The Enhancement Of Optical And Electrochemical Response, Apurva Sonawane

FIU Electronic Theses and Dissertations

In this work, the effects of atmospheric plasma treatment on morphology, optical, and electrochemical properties of 10 ± 3nm spherical silver and gold nanoparticles (AgNPs and AuNPs) functionalized substrates were studied. The nanoparticles (NPs) were deposited on substrates by drop-casting, aerosol spray, and a low-temperature atmospheric plasma-assisted aerosol jet. The reduction in nanoparticle size was observed, which was explained by the redox reaction that occurs on the nanoparticle surface. This phenomenon was evident by the presence of AgO, Ag2O, and AuOx Raman peaks in the treated sample. The surface charge changed as a result of plasma treatment, as ...


Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang Jun 2020

Cancer Biomarker Detection In Human Plasma By Integrating Surface Acoustic Wave And Metal-Enhanced Fluorescence, Yuqi Huang

Graduate Theses and Dissertations

This thesis includes data and discussion about the technique of metal-enhanced fluorescence (MEF) to lower the detection limit of carcinoembryonic antigen (CEA). The detection limit goes down to 100pg/mL level when using MEF substrate made by rapid thermally annealed silver film covered by silica, which has great promise in diagnosing certain types of cancer that uses CEA as detection biomarker, such as pancreatic cancer and colon cancer. To further address the issue of background noises from non-specifically bound proteins (NSB) in complex media, such as plasma, serum, urine and blood, MEF is integrated with surface acoustic wave (SAW) streaming ...


Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu Jun 2020

Investigation Of New Forward Osmosis Draw Agents And Prioritization Of Recent Developments Of Draw Agents Using Multi-Criteria Decision Analysis, Jodie Wei Yu

Master's Theses

Forward osmosis (FO) is an emerging technology for water treatment due to their ability to draw freshwater using an osmotic pressure gradient across a semi-permeable membrane. However, the lack of draw agents that could both produce reasonable flux and be separated from the draw solution at a low cost stand in the way of widespread implementation. This study had two objectives: evaluate the performance of three materials — peptone, carboxymethyl cellulose (CMC), and magnetite nanoparticles (Fe3O4 NPs) — as potential draw agents, and to use multi-criteria decision matrices to systematically prioritize known draw agents from literature for research investigation ...