Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2010

Theses/Dissertations

Materials Science and Engineering

Institution
Keyword
Publication

Articles 1 - 30 of 125

Full-Text Articles in Engineering

Characterization And Fabrication Of Active Matrix Thin Film Transistors For An Addressable Microfluidic Electrowetting Channel Device, Seyeoul Kwon Dec 2010

Characterization And Fabrication Of Active Matrix Thin Film Transistors For An Addressable Microfluidic Electrowetting Channel Device, Seyeoul Kwon

Doctoral Dissertations

The characterization and fabrication of active matrix thin film transistors (TFTs) has been studied for an addressable microfluidic electrowetting channel device as application. A new transparent semiconductor material, Amorphous Indium Gallium Zinc Oxide (a-IGZO), is used for TFT, which shows high electrical performance rather than amorphous silicon based TFT; higher mobility and even higher transparency. The purpose of this dissertation is to optimize each TFT process including the optimization of a-IGZO properties to achieve robust device for application. To minimize hysteresis of TFT curves, the gate dielectric is discussed extensively in this dissertation. By optimizing gas ratio of NH3SiH4, it …


Dependence Of Microstructure Evolution, Texture, And Mechanical Behavior Of A Mg Alloy On Thermo-Mechanical Input During Friction Stir Processing, Zhenzhen Yu Dec 2010

Dependence Of Microstructure Evolution, Texture, And Mechanical Behavior Of A Mg Alloy On Thermo-Mechanical Input During Friction Stir Processing, Zhenzhen Yu

Doctoral Dissertations

In this thesis, the relationship among friction stir processing (FSP) parameters, microstructure evolution, texture development, and mechanical hehavior of AZ31B Mg alloy was investigated.

First of all, in order to reveal the correlation among the deformation conditions, dynamic recrystallization (DRX) mechanisms, and microstructure evolution in the Mg alloy, hot compression tests at a wide range of Zener-Hollomon parameter (Z) values were conducted. Through optical microscopic examination, it was found out that above a critical Z value, twinning influences the DRX process resulting in a more effective grain refinement, which is manifested in a significant change in the slope of the …


Thin Film Combinatorial Synthesis Of Advanced Scintillation Materials, Jonathan Daniel Peak Dec 2010

Thin Film Combinatorial Synthesis Of Advanced Scintillation Materials, Jonathan Daniel Peak

Doctoral Dissertations

The development and application of a combinatorial sputtering thin film technique to screen potential scintillation material systems was investigated. The technique was first benchmarked by exploring the binary lutetium oxide-silicon oxide material system, which successfully identified the luminescence phases of the system, Lu2SiO5 (LSO) and Lu2Si2O7 (LPS). The second application was to optimize the activator concentration in cerium doped LSO. The successfully optimized cerium concentration in the thin film LSO of 0.34 atomic percent was much greater than the standard cerium concentration in single crystal LSO. This lead to an intensive study based on temperature dependent steady-state and lifetime photoluminescence …


Energetics And Kinetics Of Dislocation Initiation In The Stressed Volume At Small Scales, Tianlei Li Dec 2010

Energetics And Kinetics Of Dislocation Initiation In The Stressed Volume At Small Scales, Tianlei Li

Doctoral Dissertations

Instrumented nanoindentation techniques have been widely used in characterizing mechanical behavior of materials in small length scales. For defect-free single crystals under nanoindentation, the onset of elastic-plastic transition is often shown by a sudden displacement burst in the measured load-displacement curve. It is believed to result from the homogeneous dislocation nucleation because the maximum shear stress at the pop-in load approaches the theoretical strength of the material and because statistical measurements agree with a thermally activated process of homogeneous dislocation nucleation. For single crystals with defects, the pop-in is believed to result from the sudden motion of pre-existing dislocations or …


Investigating Wood Welding Parameters Using A Prototype Welding Machine, Timothy R. Melin Dec 2010

Investigating Wood Welding Parameters Using A Prototype Welding Machine, Timothy R. Melin

Master's Theses

Understanding how different processing variables influence wood welded bonds is vital if the technique will ever be used to create engineered lumber without using adhesives. A variation of vibration welding, wood welding uses pressure and friction to bond materials together. During welding, heat causes a softening in the wood, a naturally occurring composite material. This softening leads to fiber entanglement and a bond forms upon cooling.

The goal of this research was to investigate several processing aspects of the wood welding procedure. A prototype wood welding machine, designed and fabricated from the ground up, was used to investigate the effects …


Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana Dec 2010

Chemical And Electronic Structure Of Surfaces And Interfaces In Compound Semiconductors, Sujitra Pookpanratana

UNLV Theses, Dissertations, Professional Papers, and Capstones

The interface formation between two different materials is important in applications for optoelectronic devices. Often, the success or performance of these devices is dependent on the formation of these heterojunctions. In this work, the surface and interfaces in such materials for optoelectronic devices are investigated by a suite of X-ray analytical techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), and X-ray emission (XES) spectroscopies to provide novel insight.

For the group III-nitrides (e.g., AlxGa1-xN) used in many light emitting devices, a significant challenge exists to form an Ohmic contact. The electron affinities and band gaps of GaN and …


Mesophase Pitch-Based Carbon Fiber And Its Composites: Preparation And Characterization, Chang Liu Dec 2010

Mesophase Pitch-Based Carbon Fiber And Its Composites: Preparation And Characterization, Chang Liu

Masters Theses

The objective of this study is to investigate the relationship among process, structure, and property of the UTSI pitch-based carbon fibers and optimize carbon fiber’s mechanical properties through the stabilization process. Various analysis techniques were employed throughout these investigations which include the Scanning Electron Microscope (SEM), optical microscope, Dia-stron system, MTS, and ImageJ.

Several fiber process techniques including fiber spinning, stabilization, and carbonization were explored to determine the effect of the thermal process on the fiber yield, fiber diameter, the sheath-core structure of stabilized fibers, the pac-man and hollow core structures of carbonized fibers, and the resulting mechanical properties of …


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed Dec 2010

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …


Optimizing The Mechanical Properties Of Partially Yttria Stabilized Zirconia With Alumina Additions, Ramanaganapathy Kandaswamy Dec 2010

Optimizing The Mechanical Properties Of Partially Yttria Stabilized Zirconia With Alumina Additions, Ramanaganapathy Kandaswamy

All Theses

Zirconia is one of the extensively studied solid oxide ceramics with respect to its use in various industrial applications like electrolyte in fuel cells, sensors, refractories and exhaust chamber in automobile industry. It can be found from the literature 1-4 that are contradictory results on the mechanical properties when alumina is added. There are several factors like microstructure, phase composition and method of processing that affects the mechanical properties of the material. The focus of this research is to examine how hardness, tensile strength and other properties varies with alumina content and deduce the optimal amount of alumina that is …


Production And Characterization Of Aramid Copolymer Fibers For Use In Cut Protection, Jeffrey Moreland Dec 2010

Production And Characterization Of Aramid Copolymer Fibers For Use In Cut Protection, Jeffrey Moreland

All Dissertations

High-performance fibers such as para-aramids are used extensively in gloves for cut protection. However, the inherent cut resistance of these fibers and the relationship between cut resistance and other material properties is not known. To better understand cut resistance at the material level, an experiment was conducted using a lab-scale wet spinning system to produce and characterize aramid copolymer fibers.
To facilitate the use of lab-scale equipment, the experiment was conducted as a four-factor split-plot response surface design. The four treatment factors studied were solvent concentration in the coagulation bath, the amount of salt in the coagulation bath, the degree …


Utilizing Copper(I) Catalyzed Azide-Alkyne Huisgen 1,3-Dipolar Cycloaddition For The Surface Modification Of Colloidal Particles With Electroactive And Emissive Moieties, Parul Rungta Dec 2010

Utilizing Copper(I) Catalyzed Azide-Alkyne Huisgen 1,3-Dipolar Cycloaddition For The Surface Modification Of Colloidal Particles With Electroactive And Emissive Moieties, Parul Rungta

All Dissertations

The development of charge–transporting and fluorescing colloidal particles that can be directly printed into electroluminescent devices may result in a broad impact on the use of electrical energy for illumination. The objective of this work was to design and synthesize electroactive & fluorescing colloidal particles; establish their optical, electronic, and thermodynamic properties; and transition them into a device format for potential applications. The original intended application of this work was to build “better” colloidally–based organic light emitting devices (OLEDs) by creating functional particles with superior electrical and optical performance relative to commercially available technologies, but through the course of the …


An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran Dec 2010

An Investigation Of Initially Delaminated Composite Sandwich With Delamination Arrest Mechanism Under Buckling Loading, Tony D. Tran

Master's Theses

This thesis involves the development of a fiberglass-foam composite sandwich structure with the introduction of delamination arrestment keys; therefore, a study of an initially delaminated composite sandwich structure was the experimental analysis on multiple configurations in how the arrestment keys are placed.

The first part of this thesis research was to the experimental design and manufacturing of the composite sandwich plates. These plates were later cut down to the specific test dimensions and manufacturing processes for the composite sandwich plates and test specimens were created. The composite sandwich plates were manufactured using a vacuum resin infusion process. The dimensions of …


Analyzing The Impact Of Reactive Transport On The Repository Performance Of Triso Fuel, Gregory Schmidt Dec 2010

Analyzing The Impact Of Reactive Transport On The Repository Performance Of Triso Fuel, Gregory Schmidt

UNLV Theses, Dissertations, Professional Papers, and Capstones

One of the largest determiners of the amount of electricity generated by current nuclear reactors is the efficiency of the thermodynamic cycle used for power generation. Current light water reactors (LWR) have an efficiency of 35% or less for the conversion of heat energy generated by the reactor to electrical energy. If this efficiency could be improved, more power could be generated from equivalent volumes of nuclear fuel. One method of improving this efficiency is to use a coolant flow that operates at a much higher temperature for electricity production. A reactor design that is currently proposed to take advantage …


Characterization Of Inconel 718: Using The Gleeble And Varestraint Testing Methods To Determine The Weldability Of Inconel 718, Nathaniel Oscar Knock Nov 2010

Characterization Of Inconel 718: Using The Gleeble And Varestraint Testing Methods To Determine The Weldability Of Inconel 718, Nathaniel Oscar Knock

Master's Theses

Nickel based superalloys were developed to withstand the severe thermal and mechanical environment associated with rocket propulsion systems and jet engines. In many alloy systems the strength of a component rapidly deteriorates as the operating temperature increases. Nickel based superalloys, however, retain strength over a range of temperatures which includes the operating range for many propulsion systems. This improved performance is accomplished by a combination of solid-solution strengthening, precipitation strengthening and grain-boundary strengthening. Furthermore, super-alloy systems are designed for ease of fabrication, to include machining, welding and heat treating. Inconel 718 was developed to overcome problems with post-weld cracking that …


Nanoindentation Of Annealed And As-Sputtered Thin Films Of Nickel Titanium Shape Memory Alloys, Matthew Tyson Lewis Oct 2010

Nanoindentation Of Annealed And As-Sputtered Thin Films Of Nickel Titanium Shape Memory Alloys, Matthew Tyson Lewis

Master's Theses

The bottom-up processing techniques used for making Microelectromechanical systems (MEMS) devices can produce material properties different from bulk processing. The material properties must be evaluated with the process parameters used and for changes in the process parameters. The mechanical properties are needed to design MEMS devices. A material of interest for MEMS devices is nickel titanium (NiTi) shape memory alloy (SMA) because of the high work output (~107 J/m3). This thesis will focus on the fabrication of thin film NiTi by DC magnetron sputtering deposition and testing mechanical properties of the fabricated films by nanoindentation. Thin film NiTi SMA was …


All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner Sep 2010

All Solid-State Mid-Ir Laser Development, Nonlinear Absorption Investigation And Laser-Induced Damage Study, Torrey J. Wagner

Theses and Dissertations

In this research, nonlinear optical absorption coefficients and laser-induced damage thresholds are measured in Ge and GaSb, which are materials that are used in IR detectors. Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, two-photon and free-carrier absorption coefficients are measured in Ge and GaSb at 2.05 and 2.5 μm for the first time. At these wavelengths, nonlinear absorption is the primary damage mechanism, and damage thresholds at picosecond and nanosecond pulse widths were measured and agreed well with modeled thresholds using experimentally measured parameters. The damage threshold for a single-layer Al …


Atomic And Electronic Structure Studies Of Nano-Structured Systems : Carbon And Related Materials, Sumit Saxena Aug 2010

Atomic And Electronic Structure Studies Of Nano-Structured Systems : Carbon And Related Materials, Sumit Saxena

Dissertations

Modeling in the framework of density functional theory has been conducted on carbon nanotubes and graphene nano-structures. The results have been extended to non-carbon systems such as boron nanostructures. Computational studies are complemented by experimental methods to refine the structural models and obtain a better understanding of the electronic structure.

It is observed that the zigzag edged bilayered graphene nanoribbons are highly unstable as compared to their armchair counterparts. A novel approach has been proposed for the patterning of chirality/diameter controlled single walled carbon nanotubes. Nanotube formation is found to be assisted by edge ripples along with the intrinsic edge …


Study Of Deformation Behavior Of Nanocrystalline Nickel Using Nanoindentation Techniques, Changli Wang Aug 2010

Study Of Deformation Behavior Of Nanocrystalline Nickel Using Nanoindentation Techniques, Changli Wang

Doctoral Dissertations

Nanocrystalline materials with grain size less than 100 nm have been receiving much attention because of their unparallel properties compared with their microcrystalline counterparts. Because of its high hardness, nanocrystalline nickel has been used for MEMS. Long term thermomechnical properties and deformation mechanism at both ambient and elevated temperatures need to be evaluated which is vital for reliability of its applications as structural material.

In this thesis, nanoindentation creep of nanocrystalline nickel with an as-deposited grain size of 14 nm was characterized at elevated temperatures. The nanoindentation creep rate was observed to scale with temperature and applied load (or stress), …


Laser Textured Calcium Phosphate Bio-Ceramic Coatings On Ti-6al-4v For Improved Wettability And Bone Cell Compatibility, Sameer R. Paital Aug 2010

Laser Textured Calcium Phosphate Bio-Ceramic Coatings On Ti-6al-4v For Improved Wettability And Bone Cell Compatibility, Sameer R. Paital

Doctoral Dissertations

The interaction at the surfaces of load bearing implant biomaterials with tissues and physiological fluids is an area of crucial importance to all kinds of medical technologies. To achieve the best clinical outcome and restore the function of the diseased tissue, several surface engineering strategies have been discussed by scientific community throughout the world. In the current work, we are focusing on one such technique based on laser surface engineering to achieve the appropriate surface morphology and surface chemistry. Here by using a pulsed and continuous wave laser direct melting techniques we synthesize three dimensional textured surfaces of calcium phosphate …


Deformation Study Of Nanocrystalline Ni-Fe Alloy Using Synchrotron Diffraction, Li Li Aug 2010

Deformation Study Of Nanocrystalline Ni-Fe Alloy Using Synchrotron Diffraction, Li Li

Doctoral Dissertations

This dissertation addresses two critical issues in the deformation of nc metals and alloys: (1) A stress-induced genuine grain growth after the plastic deformation rather than just a change of the grain shape; (2) A systematically quantitative study of micrsostructural evolution during the plastic deformation.

These two critical issues point to the deformation of nc materials with the average-grain sizes within the range of 10 to 50 nm, which is the most interesting and controversial region in the current time. The current study provides a systematic and detailed microstructural evolution for this region, which is definitely beneficial for the investigation …


Corrosion Dynamics Of Cobalt-Chromium Alloy F-75 Powder, Tedman Tong Aug 2010

Corrosion Dynamics Of Cobalt-Chromium Alloy F-75 Powder, Tedman Tong

Master's Theses

The increasing usage of metal-on-metal joint replacements consisting of a cobalt-chromium-molybdenum alloy requires increasing concern regarding the inevitable generation of metallic wear debris. Patients with these joint replacements exhibit elevated concentrations of cobalt and chromium ions within their serum, blood and urine. The presence of these metal ions suggests the potential for bodily damage and indicates corrosive processes are acting upon wear debris.

To understand the behavior of these corrosive processes, powders of cobalt-chromium-molybdenum alloy F-75 were studied. Four powder sizes (44, 74, 105, and 420 µm diameter) were subjected to Hank’s Balanced Salt Solution (HBSS) for a 42 day …


The Effects Of Applied Strain And Heat Treatment On The Properties Of Niti Wire During Shape Setting, Frank Zapoticla Aug 2010

The Effects Of Applied Strain And Heat Treatment On The Properties Of Niti Wire During Shape Setting, Frank Zapoticla

Master's Theses

NiTi components are commonly subjected to thermo-mechanical heat treatments during production and fabrication. This study investigates the effects of applied strain of 0-10% and heat treatments of 300-600ºC for times of 2-30 minutes during shape-setting of Ti–50.8 at% Ni wire with a nominal diameter of 0.495 mm and an initial transition temperature, Af, of 12ºC. Strain was applied prior to heat treatments by coiling NiTi wire, essentially producing coiled springs, around different diameter steel mandrels to obtain different strain levels. The samples of NiTi wire under applied strain were heat treated in a salt bath, followed by a rapid quench. …


Surface Characterization And Electrochemical Behavior Of Colloidal Particles, Cinta Pepin Aug 2010

Surface Characterization And Electrochemical Behavior Of Colloidal Particles, Cinta Pepin

All Theses

There is an ongoing interest in research focused on developing polymeric organic-light-emitting-devices (OLED) to replace inorganic devices. Compared to inorganic devices, OLEDs could present better properties such as higher efficiency, lower cost and simpler device fabrication. In an attempt to get a device with high efficiency, the hole transporting group and the electron transporting group were combined into a polymer to make an individual 'particle device'. The idea was to create a polymer particle containing both charge transporting moieties via emulsion polymerization. In this presentation, different techniques will be described that were used to determine the stability and the surface …


Influence Of Iso-Structural Substitutions On Properties Of Ge(As,Sb)(S,Se) Glasses, Guillaume Guery Aug 2010

Influence Of Iso-Structural Substitutions On Properties Of Ge(As,Sb)(S,Se) Glasses, Guillaume Guery

All Theses

Chalcogenide glasses possess exceptional infrared transparency, large non-linear refractive indexes and low phonon energies, making them good candidates for infrared optical applications. Previous studies in the Ge-Sb-S glass system have shown an increase in the nonlinear refractive index with an iso-structural substitution of two- coordinated selenium (Se) for sulphur (S) and variation of other physical properties with substitution of other iso-structural species such as three-coordinated arsenic (As) for antimony (Sb). The role of such iso-structural exchange on properties important to the thermo-, visco- and mechanical attributes of glasses in the Ge-As/Sb-S/Se system has not been thoroughly evaluated and form the …


Microstructure Modification Of Cu0.2ag2.8sbsete2 Through, Sloan Lindsey Aug 2010

Microstructure Modification Of Cu0.2ag2.8sbsete2 Through, Sloan Lindsey

All Theses

Cu0.2Ag2.8SbSeTe2 is new potential thermoelectric compound that exhibits very low thermal conductivity and a region of glass-like thermal conductivity. The compound phase segregates into AgSbTe2 and Ag2Te phases with Se and Cu acting as isoelectronic dopants. Backscatter SEM imaging is used to study the resulting microstructure. Normally cast samples exhibit cracks forming near the interfaces of the two phases. In this work we show that the cracks are caused by a low temperature monoclinic to cubic phase transition that occurs in the Ag2Te phase. We demonstrate that through rapid quenching we can control the size and shape of the phase …


Fabrication Of Fluorescent Nanoparticle-Polymer Composites For Photoactive-Based Materials, Brett Ellerbrock Aug 2010

Fabrication Of Fluorescent Nanoparticle-Polymer Composites For Photoactive-Based Materials, Brett Ellerbrock

All Theses

Nanocomposites of nanoparticles dispersed throughout a polymer matrix have been studied to great length to improve the overall polymer properties. These enhancements are observed in the thermal, physical, and/or optical characteristics. Being able to harness nanoparticles in such a way may help improve fiber technology into the 21st century.
This work was geared toward synthesizing rare earth doped lanthanum fluoride (LaF3) nanoparticles because good separation in the absorption and emission bands of the material and it fluoresces in the visible to near-infrared range. Terbium ions were added to a LaF3 crystal because of their distinct visible green …


Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng Aug 2010

Methods For Characterizing Mechanical Properties Of Wood Cell Walls Via Nanoindentation, Yujie Meng

Masters Theses

Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).

The function of the embedding media in describing the properties of wood cells is poorly understood. …


Formation And Characterization Of Polymerized Supported Phospholipid Bilayers And The In Vitro Interactions Of Macrophages And Fibroblasts., Jonathan Michael Page Aug 2010

Formation And Characterization Of Polymerized Supported Phospholipid Bilayers And The In Vitro Interactions Of Macrophages And Fibroblasts., Jonathan Michael Page

Masters Theses

Planar supported, polymerized phospholipid bilayers (PPBs) composed of 1,2-bis[10-(2’,4’-hexadienoyloxy)decanoyl]-sn-glycero-3-phosphocholine (bis-SorbPC or BSPC) were generated by a redox polymerization method. The PPBs were supported by a silicon substrate. The PPBs were characterized and tested for uniformity and stability under physiological conditions. The PPBs were analyzed in vitro with murine derived cells that are pertinent to the host response. Cellular attachment and phenotypic changes in RAW 264.7 macrophages and NIH 3T3 fibroblasts were investigated on PPBs and compared to bare silicon controls. Fluorescent and SEM images were used to observe cellular attachment and changes in cellular behavior. The PPBs showed much lower …


Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy Aug 2010

Elastic And Magnetic Properties Of Tb6fe(Sb,Bi)2 Using Resonant Ultrasound Spectroscopy., David Michael Mccarthy

Masters Theses

Tb6FeSb2 and Tb6FeBi2 are novel rare earth compounds with little prior research. These compounds show high and variable curie temperatures for rare-earth compounds. This has lead to a literature review which includes the discussion of: elasticity, resonance, and magnetism. This review is used to discuss the theory and methodology which can relate these various properties to each other. Furthermore, synthesis, x-ray analysis, and RUS sample preparation of Tb6FeSb2 and Tb6FeBi2 were completed.

Resonant Ultrasound Spectroscopy (RUS) elastic studies were taken for Tb6FeSb2 and Tb6FeBi2 as a function temperature from 5-300K, in various magnetic fields ranging from 0-9T. Tb6FeSb2’s and Tb6FeBi2’s …


Synthesis And Scintillation Of Single Crystal And Polycrystalline Rare-Earth-Activated Lutetium Aluminum Garnet, Paul A Cutler Aug 2010

Synthesis And Scintillation Of Single Crystal And Polycrystalline Rare-Earth-Activated Lutetium Aluminum Garnet, Paul A Cutler

Masters Theses

Single crystals with composition Lu3Al5O12 were synthesized using Czochralski and micro-pulling-down melt growth techniques. Polycrystalline ceramics of the same composition were synthesized by vacuum annealing of powders prereacted using a citrate-nitrate combustion technique and by spark-plasma-sintering of powders prereacted using a flame-spray-pyrolysis technique. Single crystals and polycrystalline ceramics are activated with Ce3+ or Pr3+ or doubly activated with Ce3+ and Tb3+ ions. Cerium-doped Czochralski-grown single crystals were compared to cerium-terbium codoped Czochralski-grown and micro-pulling down single crystals. Cerium-terbium codoped single crystals are also compared to similarly-activated polycrystalline ceramics sintered under vacuum using combustion-synthesized prereacted powders. X-ray diffraction analysis and fluorescence …