Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Engineering

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa Dec 2021

Energy Planning Model Design For Forecasting The Final Energy Consumption Using Artificial Neural Networks, Haidy Eissa

Theses and Dissertations

“Energy Trilemma” has recently received an increasing concern among policy makers. The trilemma conceptual framework is based on three main dimensions: environmental sustainability, energy equity, and energy security. Energy security reflects a nation’s capability to meet current and future energy demand. Rational energy planning is thus a fundamental aspect to articulate energy policies. The energy system is huge and complex, accordingly in order to guarantee the availability of energy supply, it is necessary to implement strategies on the consumption side. Energy modeling is a tool that helps policy makers and researchers understand the fluctuations in the energy system. Over the …


Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako Oct 2021

Modeling Portfolios Of Low Carbon Energy Generation Under Deep Uncertainty, Franklyn Kanyako

Doctoral Dissertations

In the 2015 Paris Agreement, nearly every country pledge through the Nationally Determined Contributions (NDCs) increased adoption of low carbon energy technologies in their energy system. However, allocating investments to different low carbon energy technologies under rising demand for energy and budget constraints, uncertain technical change in these technologies involves maneuvering significant uncertainties among experts, models, and decision-makers. We examine the interactions of low carbon energy sources (LCES) under the condition of deep uncertainty. Deep uncertainty directly impacts the understanding of the role of low carbon energy technologies in climate change mitigation and how much R&D investment should be allocated …


Energy Consumption And Tardiness Improvement For A Flexible Job Shop And A Warehouse, Ahmad Ebrahimi Mar 2021

Energy Consumption And Tardiness Improvement For A Flexible Job Shop And A Warehouse, Ahmad Ebrahimi

LSU Doctoral Dissertations

In recent years, energy consumption (EC) is studied to see its effects on monetary and non-monetary costs in manufacturing and warehousing. EC in manufacturing and warehousing, however, needs to be studied with conventional performance measures such as production/operation tardiness since there is a trade-off between EC and tardiness costs. Therefore, this research is conducted with four objectives to study EC and tardiness for a flexible job shop and a warehouse as follows. The first objective of this research is to integrate job scheduling and layout, which are interrelated in improving EC and tardiness for a flexible job shop. Thus, we …


Infrastructure Systems Modeling Using Data Visualization And Trend Extraction, Jacob Marshal Hale Jan 2021

Infrastructure Systems Modeling Using Data Visualization And Trend Extraction, Jacob Marshal Hale

Doctoral Dissertations

“Current infrastructure systems modeling literature lacks frameworks that integrate data visualization and trend extraction needed for complex systems decision making and planning. Critical infrastructures such as transportation and energy systems contain interdependencies that cannot be properly characterized without considering data visualization and trend extraction.

This dissertation presents two case analyses to showcase the effectiveness and improvements that can be made using these techniques. Case one examines flood management and mitigation of disruption impacts using geospatial characteristics as part of data visualization. Case two incorporates trend analysis and sustainability assessment into energy portfolio transitions.

Four distinct contributions are made in this …


Dual-Axis Solar Tracker, Bryan Kennedy Jan 2020

Dual-Axis Solar Tracker, Bryan Kennedy

All Undergraduate Projects

Renewable energies, and fuels that are not fossil fuel-based, are one of the prolific topics of debate in modern society. With climate change now becoming a primary focus for scientists and innovators of today, one of the areas for the largest amount of potential and growth is that of the capturing and utilization of Solar Energy. This method involves using a mechanical system to track the progression of the sun as it traverses the sky throughout the day. A dual-axis solar tracker such as the one designed and built for this project, can follow the sun both azimuthally and in …


Energy Forensics Analysis, Rupa Das Jan 2020

Energy Forensics Analysis, Rupa Das

Graduate Theses, Dissertations, and Problem Reports

The energy consumed by a building can reveal information about the occupants and their activities inside the building. This could be utilized by industries and law enforcement agencies for commercial or legal purposes. Utility data from Smart Meter (SM) readings can reveal detailed information that could be mapped to foretell resident occupancy and type of appliance usage over desired time intervals. However, obtaining SM data in the United States is laborious and subjected to legal and procedural constraints. This research develops a user-driven simulation tool with realistic data options and assumptions of potential human behavior to determine energy usage patterns …


Enabling Innovation In The Energy System Transition, Bonnie Wylie Pratt Jan 2020

Enabling Innovation In The Energy System Transition, Bonnie Wylie Pratt

Graduate College Dissertations and Theses

Innovation in the electric sector has the potential to drive job growth, decrease environmental impacts, reduce rate payer costs, and increase reliability and resiliency. However, the traditional electric system was built to deliver a controlled flow of energy from a centralized location with maximum reliability and minimum cost. As both customer expectations and generation technologies change, new avenues for grid innovation are being explored. Residential customers, commercial and industrial clients, and electric utilities must all find a way to balance goals for decarbonization and social justice with maintaining a least cost, reliable power grid. Grounded in Geel’s energy system transition …


Electricity And Fuel Consumption In A Lean Energy Supply Chain, Mostafa Ghafoorivarzaneh May 2017

Electricity And Fuel Consumption In A Lean Energy Supply Chain, Mostafa Ghafoorivarzaneh

Doctoral Dissertations

Human activities are the main sources of environmental pollution. Awareness about this fact, motivated us to make changes in different paradigms of our lives including industrial or personal activities. Environmental activities assumed to have conflict with financial objectives, in this study we try to align business requirements with environmental concerns.

Among all human activities, generating energy has the most negative impact on the environment. The major part of the generated energy will be consumed in transportation and industrial demand which makes them the most effective targets for the reduction of greenhouse gas emission. In a lean environment, small batch sizes …


Renewable Energy Systems Optimization Using Monte Carlo Simulation And Evolutionary Algorithms, Nicolas Lopez Jan 2017

Renewable Energy Systems Optimization Using Monte Carlo Simulation And Evolutionary Algorithms, Nicolas Lopez

Open Access Theses & Dissertations

This Dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid

microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a …


Role Of Low Carbon Energy Technologies In Near Term Energy Policy, Olaitan P. Olaleye Mar 2016

Role Of Low Carbon Energy Technologies In Near Term Energy Policy, Olaitan P. Olaleye

Doctoral Dissertations

In the first part of this thesis, we use a multi-model framework to examine a set of possible future energy scenarios resulting from R&D portfolios of Solar, Nuclear, Carbon Capture and Storage (CCS), Bio-Fuels, Bio-Electricity and Batteries for electric transportation. We show that CCS significantly complements Bio-Electricity, while most of the other energy technology pairs are substitutes. From the probabilistic analysis of future energy scenarios we observe that portfolios with CCS tend to stochastically dominate those without CCS; portfolios with only renewables tend to be stochastically dominated by others; and that there are clear decreasing marginal returns to scale. We …


A Framework For Interoperability On The United States Electric Grid Infrastructure, Stuart Laval Jan 2015

A Framework For Interoperability On The United States Electric Grid Infrastructure, Stuart Laval

Electronic Theses and Dissertations

Historically, the United States (US) electric grid has been a stable one-way power delivery infrastructure that supplies centrally-generated electricity to its predictably consuming demand. However, the US electric grid is now undergoing a huge transformation from a simple and static system to a complex and dynamic network, which is starting to interconnect intermittent distributed energy resources (DERs), portable electric vehicles (EVs), and load-altering home automation devices, that create bidirectional power flow or stochastic load behavior. In order for this grid of the future to effectively embrace the high penetration of these disruptive and fast-responding digital technologies without compromising its safety, …


Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee Dec 2014

Life Cycle Assessment Projection Of Photovoltaic Cells: A Case Study On Energy Demand Of Quantum Wire Based Photovoltaic Technology Research, Shilpi Mukherjee

Graduate Theses and Dissertations

With increasing clean-energy demand, photovoltaic (PV) technologies have gained attention as potential long-term alternative to fossil fuel energy. However, PV research and manufacture still utilize fossil fuel-powered grid electricity. With continuous enhancement of solar conversion efficiency, it is imperative to assess whether overall life cycle efficiency is also being enhanced. Many new-material PV technologies are still in their research phase, and life cycle analyses of these technologies have not yet been performed. For best results, grid dependency must be minimized for PV research, and this can be accomplished by an analytical instrument called Life Cycle Assessment (LCA).

LCA is the …


Thermo-Mechanical Modeling Of The Electrically-Assisted Manufacturing (Eam) Technique During Open Die Forging, Wesley Salandro Aug 2012

Thermo-Mechanical Modeling Of The Electrically-Assisted Manufacturing (Eam) Technique During Open Die Forging, Wesley Salandro

All Dissertations

This thesis contains all of the steps which allow the Electrically-Assisted Manufacturing (EAM) technique to be experimentally explored and analytically modeled for an electrically-assisted forging operation. Chapter 1 includes the problem statement, proposed solution, and literature reviews on EAM. Chapter 2 describes a thorough background on the EAM technique, highlights prior EAM research, and explains the research approach taken for this thesis. The coupled thermo-mechanical modeling strategy, along with the introduction of the Electroplastic Effect Coefficient (EEC) is provided in Chapter 3. Chapter 4 explains the two different approaches to determine the EEC profiles when modeling a particular metal. The …


End-Of-Life Analysis Of Nanotechnology Products, Sun Olapiriyakul Jan 2010

End-Of-Life Analysis Of Nanotechnology Products, Sun Olapiriyakul

Dissertations

Previous research has shown that thermodynamic properties including melting point and specific heat capacity of nanomaterials may be higher than that of their corresponding bulk materials. The melting point elevation and specific heat capacity enhancement of nanomaterials may result in increased energy consumption and waste gases emission at the end-of-life (EOL) stage where the products containing nanomaterials are recycled by high temperature metal recovery (HTMR) process.

In this dissertation, the effect of physical characteristics of nanomaterials, referred to as physicochemical parameters, on their melting temperature and specific heat capacity was investigated. In addition, physical, chemical, and thermodynamic properties of nanomaterials …


Renewable Energy Integration: An Approach For Micro-Grid Optimization., Nicolas Lopez Jan 2010

Renewable Energy Integration: An Approach For Micro-Grid Optimization., Nicolas Lopez

Open Access Theses & Dissertations

This thesis explores the Renewable Energy Integration Problem beginning with a literature review on the different sources of electrical energy classified as Non-Renewable and Renewable, stating that the integration of renewable sources within the pre-existing Power-Grids is a current worldwide problem that is being addressed with different approaches.

The impossibility to exactly model the different equations relating the electric output of the renewable energy sources as they relate with meteorological factors, makes the renewable sector a stochastic component of the overall mathematical model, where it can be concluded that most of the problem is in the area of the forecast. …