Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrochemistry

Discipline
Institution
Publication Year
Publication

Articles 61 - 84 of 84

Full-Text Articles in Engineering

Electrochemical Studies Of Cerium And Uranium In Licl-Kcl Eutectic For Fundamentals Of Pyroprocessing Technology, Dalsung Yoon Jan 2016

Electrochemical Studies Of Cerium And Uranium In Licl-Kcl Eutectic For Fundamentals Of Pyroprocessing Technology, Dalsung Yoon

Theses and Dissertations

Understanding the characteristics of special nuclear materials in LiCl-KCl eutectic salt is extremely important in terms of effective system operation and material accountability for safeguarding pyroprocessing technology. By considering that uranium (U) is the most abundant and important element in the used nuclear fuel, measurements and analyses of U properties were performed in LiCl-KCl eutectic salt. Therefore, the electrochemical techniques such as cyclic voltammetry (CV), open circuit potential (OCP), Tafel, linear polarization (LP), and electrochemical impedance spectroscopy (EIS) were conducted under different experimental conditions to explore the electrochemical, thermodynamic, and kinetic properties of U in LiCl-KCl eutectic. The ultimate goal …


Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan Jan 2016

Transient Cfd Simulations Of Pumping And Mixing Using Electromagnetic, Fangping Yuan

Doctoral Dissertations

"In this dissertation, two dimensional and three dimensional, transient CFD simulations are conducted to investigate the active pumping and mixing in microfluidics driven by Electromagnetic/Lorentz force. Shallow disk/ring cylindrical microfluidic cell and shallow cuboid microfluidic cell with electrodes deposited on the bottom surface are modelled for mixing and pumping purposes respectively. By applying voltage across specific pair of electrodes, an ionic current is established in the weak conductive liquid present in the cell. The current interacts with an externally applied magnetic field generating a Lorentz force that causes fluid motion in the cell. Velocity vectors, electric potential distributions and ionic …


Electrochemical Detection Of Antioxidants, Garrett Thompson Jan 2016

Electrochemical Detection Of Antioxidants, Garrett Thompson

Honors Theses and Capstones

No abstract provided.


Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner Nov 2015

Feasibility Of Cathodic Protection In Grouted Post Tensioned Tendons - Exploratory Model Calculations, Jacob Dharma Bumgardner

USF Tampa Graduate Theses and Dissertations

Recent corrosion related failures of grouted post tensioned tendons, even after the introduction of improved grouts, have led to renewed interest in supplemental or backup means of corrosion control for these systems. A finite element model is presented to explore feasibility of impressed current cathodic protection of strand in grouted tendons. The model examines polarization evolution as function of service time and includes consideration of anode placement and size, grout porosity, pore water alkalinity, electrochemical species diffusivity and applied voltage on the polarization efficacy and durability of such a system. The exploratory model projections suggested that, within the context of …


Fundamentals Of Electro-Flotation And Electrophoresis And Applications In Oil Sand Tailings Management, Raquibul Alam Sep 2015

Fundamentals Of Electro-Flotation And Electrophoresis And Applications In Oil Sand Tailings Management, Raquibul Alam

Electronic Thesis and Dissertation Repository

This thesis addresses two challenges facing the management of mature fine tailings (MFT) from oil sand processing. The first challenge is the high concentration of residual bitumen in tailings ponds, which poses a hazard to aquatic biota and impact to the environment. A laboratory scale study is carried out to assess the suitability of electro-flotation (EF) for removal of bitumen from oil sand tailings slurry. The results of the study confirm that EF is effective to reduce bitumen contents of tailings slurry. At a current density 150 A/m2, the bitumen concentration is reduced from 106.8 mg/L to less …


An Improved Dynamic Particle Packing Model For Prediction Of The Microstructure In Porous Electrodes, Chien-Wei Chao Sep 2015

An Improved Dynamic Particle Packing Model For Prediction Of The Microstructure In Porous Electrodes, Chien-Wei Chao

Theses and Dissertations

The goal of this work is to develop a model to predict the microstructure of Li-ion batteries, specifically focusing on the cathode component of the batteries. This kind of model has the potential to assist researchers and battery manufacturers who are trying to optimize the capacity, cycle life, and safety of batteries. Two dynamic particle packing (DPP) microstructure models were developed in this work. The first is the DPP1 model, which simulates the final or dried electrode structure by moving spherical particles under periodic boundaries using Newton's laws of motion. The experience derived from developing DPP1 model was beneficial in …


Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan Aug 2015

Tin Nanoparticles Encapsulated In Hollow Tio2 Spheres As High Performance Anode Materials For Li-Ion Batteries, Xiang Pan

Theses and Dissertations

Tin, an anode material with a high capacity for lithium-ion batteries, has poor cyclic performance because of the high volume expansion upon lithiation. Based on a literature review of the applications of lithium-ion batteries and current research progress of the tin-based anode materials for lithium-ion batteries, we developed a method to synthesize hollow TiO2 spheres with tin nanoparticles anchored on the inner surface of the TiO2 shell. Such a unique tin/TiO2 composite alleviates the volume change of tin–based anode materials in charge-discharge processes. SnCl2·2H2O (Tin (II) chloride dihydrate) and titanium (IV) isopropoxide (TIPT) were used as the Sn source and …


The Electroreduction Of Carbon Dioxide On Porous Copper Nanoparticles, Monica Alisa Padilla Jun 2015

The Electroreduction Of Carbon Dioxide On Porous Copper Nanoparticles, Monica Alisa Padilla

Chemical and Biological Engineering ETDs

Copper nanoparticles of porous, controlled structure were synthesized using the sacrificial support method (SSM). The precursor weight percent (wt%) of copper (Cu) and fumed silica (EH-5) was varied to determine the optimum ratio for this material. The precursors were reduced at i) 350°C in a 7% H2 atmosphere and ii) at 250°C in a 100% H2 atmosphere. The specific surface areas of the nanoparticles was measured by Brunauer-Emmett-Teller N2 absorption. The morphologies and widths of the nanoparticles were confirmed by imaging the nanoparticles by scanning electron microscopy (SEM). The bulk composition of the nanoparticles was determined by X-ray diffraction (XRD). …


Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang May 2015

Oxygen Reduction Reaction By Copper Complex Based Electrocatalysts, Congling Zhang

Doctoral Dissertations

My research focuses on catalysis of oxygen reduction reaction (ORR) by a series of Cu(II) [copper with positive two valence] -1,2,4-triazole complex-based electrocatalysts at the cathode of PEMFC (polymer electrolyte membrane fuel cell), an efficient and environmental friendly energy conversion system compared to internal combustion engines in use today. The sluggish kinetics of ORR considerably limited the performance of PEMFCs. Understanding of ORR mechanism is important for developing affordable, active and durable ORR catalysts for such devices.

The first part of my work focused on improving the ORR performance of Cu(II)-1,2,4-triazole complex-based catalysts in an acidic environment by exploring synthesis …


Synthesis, Characterization, And Electrochemical Properties Of Polyaniline Thin Films, Soukaina Rami Mar 2015

Synthesis, Characterization, And Electrochemical Properties Of Polyaniline Thin Films, Soukaina Rami

USF Tampa Graduate Theses and Dissertations

Conjugated polymers have been used in various applications (battery, supercapacitor, electromagnetic shielding, chemical sensor, biosensor, nanocomposite, light-emitting-diode, electrochromic display etc.) due to their excellent conductivity, electrochemical and optical properties, and low cost. Polyaniline has attracted the researchers from all disciplines of science, engineering, and industry due to its redox properties, environmental stability, conductivity, and optical properties. Moreover, it is a polymer with fast electroactive switching and reversible properties displayed at low potential, which is an important feature in many applications. The thin oriented polyaniline films have been fabricated using self-assembly, Langmuir-Blodgett, in-situ self-assembly, layer-by-layer, and electrochemical technique. The focus of …


Electrochemical Processes In Microfluidics Systems Under Ac Electric Fields, Ran An Jan 2015

Electrochemical Processes In Microfluidics Systems Under Ac Electric Fields, Ran An

Dissertations, Master's Theses and Master's Reports - Open

Alternating current (AC) electric signal has been widely applied in microfluidic systems to induce AC electrokinetic behavior. AC electrokinetic phenomena including AC electrophoresis, AC dielectrophoresis, AC electroosmosis flow and AC electrothermal flow are widely applied in (bio)particle sorting, separation and concentration and micropumps. However, numbers of non-ideal AC electrokinetic behaviors have been reported: human erythrocyte deformation in AC dielectrophoresis system has been observed; flow reversal in AC electroosmosis flow pumps has also been reported. In this dissertation, a systematic study on human erythrocyte crenation in AC dielectrophoresis system was firstly conducted. Multiple possible physical mechanisms inducing cell crenation including temperature, …


Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami Aug 2014

Molecular Dynamics (Md) Study On The Electrochemical Properties Of Electrolytes In Lithium-Ion Battery (Lib) Applications, Negin Salami

Theses and Dissertations

While the high energy density and the power along with longer cycle life and less requirements of maintenance distinguish the rechargeable lithium-ion batteries (LIBs) from other energy storage devices, development of an electrolyte of LIBs with optimized properties still constitutes a challenge towards next-generation LIB systems with robust electrochemical performance. The electrolytes serve as the medium to provide ionic conduction path between the electrodes as their basic function. Conductivity of the solutions are mainly affected by their transport properties and the electrolyte electrode/separator interfacial phenomena. Although many contributions on thermodynamic properties of the electrolytes consist of alkyl carbonates mixed with …


The Development And Biocompatibility Of Low Temperature Co-Fired Ceramic (Ltcc) For Microfluidic And Biosensor Applications, Jin Luo Jan 2014

The Development And Biocompatibility Of Low Temperature Co-Fired Ceramic (Ltcc) For Microfluidic And Biosensor Applications, Jin Luo

Theses and Dissertations--Chemical and Materials Engineering

Low temperature co-fired ceramic (LTCC) electronic packaging materials are applied for their electrical and mechanical properties, high reliability, chemical stability and ease of fabrication. Three dimensional features can also be prepared allowing integration of microfluidic channels and cavities inside LTCC modules. Mechanical, optical, electrical, microfluidic functions have been realized in single LTCC modules. For these reasons LTCC is attractive for biomedical microfluidics and Lab-on-a-Chip systems. However, commercial LTCC systems, optimized for microelectrics applications, have unknown cytocompatibility, and are not compatible with common surface functionalization chemistries.

The first goal of this work is to develop biocompatible LTCC materials for biomedical applications. …


Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore Dec 2013

Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore

Graduate Theses and Dissertations

Unique microfluidic control actuated by simply turning off and on microfabricated electrodes in a small-volume system was investigated for lab-on-a-chip applications. This was accomplished using a relatively new pumping technique of redox-magnetohydrodynamics (MHD), which as shown in this dissertation generated the important microfluidic features of flat flow profile and fluid circulation. MHD is driven by the body force, FB = j × B, which is the magnetic part of the Lorentz force equation, and its direction is given by the right hand rule. The ionic current density, j, was generated in an equimolar solution of potassium ferri/ferro cyanide by applying …


Manufacturing Of Single Solid Oxide Fuel Cells, Jonathan Torres-Caceres Jan 2013

Manufacturing Of Single Solid Oxide Fuel Cells, Jonathan Torres-Caceres

Electronic Theses and Dissertations

Solid oxide fuel cells (SOFCs) are devices that convert chemical energy into electrical energy and have the potential to become a reliable renewable energy source that can be used on a large scale. SOFCs have 3 main components; the electrolyte, the anode, and the cathode. Typically, SOFCs work by reducing oxygen at the cathode into O2- ions which are then transported via the electrolyte to the anode to combine with a fuel such as hydrogen to produce electricity. Research into better materials and manufacturing methods is necessary to reduce costs and improve efficiency to make the technology commercially viable. The …


Electrochemical Capacitance Measurements To Study Molecular Surface Interactions, Nrutya Madduri May 2012

Electrochemical Capacitance Measurements To Study Molecular Surface Interactions, Nrutya Madduri

All Theses

The behavior of biological molecules such as proteins at the electrode/electrolyte has been of considerable interest for the development of biosensors. Several investigative techniques including Potentiometry, Voltammetry, Amperometry, and Electrochemical Impedance Spectroscopy are being employed to study and analyze these molecular surface interactions. Investigative techniques such as cyclic voltammetry involve the application of a large potential to probe the electrode characteristics and capture the bulk membranous events to obtain the required measurements. This study looks to achieve two major objectives through the use of a novel technique, namely, the double layer capacitive method: 1) to analyze the electrochemical behavior of …


Synthesis And Characterization Of Nanocomposites For Electrochemical Capacitors, Farah Alvi Feb 2012

Synthesis And Characterization Of Nanocomposites For Electrochemical Capacitors, Farah Alvi

USF Tampa Graduate Theses and Dissertations

Presently there are deep concerns over the environmental consequences and the consumption of non-renewable energy sources, with the accelerated greenhouse effect, triggered enormous interest in the use of renewable energy sources e.g., solar, hydropower, wind and geothermal. However the intermittent nature of harvesting renewable energy sources has recently gained considerable attention in the alternative reliable, cost effective, and environmentally friendly energy storage devices. The supercapacitor and lithium ion batteries are considered more efficient electrical energy storage devices than conventional energy storage systems.

Both devices have many useful and important applications; they could be an excellent source for high power and …


Microstructure And Transport Properties Of Porous Li-Ion Electrodes, David E. Stephenson Jun 2011

Microstructure And Transport Properties Of Porous Li-Ion Electrodes, David E. Stephenson

Theses and Dissertations

The goal of this work is to understand the relationships between electrode microstructure and mass transport resistances. One can use this information to predict cell performance from fundamental principles. This work includes new types of particle-scale 3D models for correlating and predicting the effects of electrode microstructure on both ionic and electronic transport. The 3D models imitate the sub-micrometer-scale arrangement of active material particles, carbon, binder, and pores and use FIB/SEM images as a basis for parameterization. The 3D models are based respectively on the statistical mechanics techniques of molecular dynamics and Monte Carlo. The approach closely related to molecular …


The Effect Of The Environment On The Corrosion Products And Corrosion Rates On Gas Transmission Pipelines, Brent Sherar Jun 2011

The Effect Of The Environment On The Corrosion Products And Corrosion Rates On Gas Transmission Pipelines, Brent Sherar

Electronic Thesis and Dissertation Repository

This thesis reports a series of investigations examining external corrosion processes along gas transmission pipelines. TransCanada PipeLines Ltd. (TCPL) has developed six proposed corrosion scenarios to describe external pipeline corrosion, based primarily on corrosion products and corrosion rates (CRs) observed at field sites. The six proposed corrosion scenarios can be divided into two groups: abiotic and biotic. The three abiotic corrosion scenarios are (1) anaerobic corrosion, (2) aerobic corrosion, and (3) anaerobic corrosion turning aerobic; while (4) anaerobic corrosion with microbial effects, (5) aerobic corrosion turning anaerobic with microbial effects, and (6) anaerobic corrosion with microbial effects turning aerobic comprise …


Investigation Of Titanium Nitride As Catalyst Support Material And Development Of Durable Electrocatalysts For Proton Exchange Membrane Fuel Cells, Bharat Avasarala Jan 2011

Investigation Of Titanium Nitride As Catalyst Support Material And Development Of Durable Electrocatalysts For Proton Exchange Membrane Fuel Cells, Bharat Avasarala

Legacy Theses & Dissertations (2009 - 2024)

The impending energy and climatic crisis makes it imperative for human society to seek non-fossil based alternative sources for our energy needs. Although many alternative energy technologies are currently being developed, fuel cell technology provides energy solutions, which satisfy a wide range of applications. But the current fuel cell technology is far from its target of large scale commercialization mainly because of its high cost and poor durability. Considerable work has been done in reducing the cost but its durability still needs significant improvement. Of the various materials in a PEM fuel cell, the degradation of electrocatalyst affects its durability …


Slurry Chemistry Effects On Copper Chemical Mechanical Planarization, Ying Luo Jan 2004

Slurry Chemistry Effects On Copper Chemical Mechanical Planarization, Ying Luo

Electronic Theses and Dissertations

Chemical-mechanical Planarization (CMP) has emerged as one of the fastest-growing processes in the semiconductor manufacturing industry, and it is expected to show equally explosive growth in the future (Braun, 2001). The development of CMP has been fueled by the introduction of copper interconnects in microelectronic devices. Other novel applications of CMP include the fabrications of microelectromechanical systems (MEMS), advanced displays, three dimensional systems, and so on (Evans, 2002). CMP is expected to play a key role in the next-generation micro- and nanofabrication technologies (Singh, et al., 2002). Despite the rapid increase in CMP applications, the fundamental understanding of the CMP …


Electrolytic Refining Of Copper By The Series System, Jerome Yopps May 1959

Electrolytic Refining Of Copper By The Series System, Jerome Yopps

Bachelors Theses and Reports, 1928 - 1970

The purpose of this thesis investigation was to determine the characteristics of the series system of electrolytic refining of copper.


Electrodeposition Of Cellulose And Carboxy-Methylcellulose, Charles Edward Driesens Jr. Jun 1956

Electrodeposition Of Cellulose And Carboxy-Methylcellulose, Charles Edward Driesens Jr.

Theses

The previous work done by Frank Cozzarelli on the eleotrodeposition of cellulose from a sodium zincate-urea-cellulose system has been verified, except that zinc was found to deposit on the cathode at all voltages and current densities within the range of the optimum conditions for deposition. The optimum conditions are: voltage - 1.10 to 1.28 volts; current density 0.13 to 1.10 amperes/square foot; electrode material - copper. Current efficiencies range from 0.80 to 5.53%.

A chelate-like complex formed from the sodium zincate and urea which couples with the cellulose has been proposed as a possible explaination of the mechanism governing the …


The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden May 1941

The Theory Of Alloy Deposition And The Effect Of A Rotating Cathode Upon Such Deposition, With Special Attention To The Possibility Of Depositing Sterling Silver, Kenneth J. Stodden

Bachelors Theses and Reports, 1928 - 1970

In the past few years a great deal of atten­tion has been given to the electrodeposition of alloys. For the main part, this investigation has been of scien­tific interest only; but in a few instances, such work has attained commercial importance.