Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 46 of 46

Full-Text Articles in Engineering

Comprehensive Finite Element Modeling Of Ti-6al-4v Cellular Solids Fabricated By Electron Beam Melting, Edel Arrieta Jan 2017

Comprehensive Finite Element Modeling Of Ti-6al-4v Cellular Solids Fabricated By Electron Beam Melting, Edel Arrieta

Open Access Theses & Dissertations

Additive manufacturing permits the fabrication of cellular metals which are materials that can be highly customizable and possess multiple and extraordinary properties such as damage tolerance, metamorphic and auxetic behaviors, and high specific stiffness. This makes them the subject of interest for innovative applications. With interest in these materials for energy absorption applications, this work presents the development of nonlinear finite element models in commercial software platforms (MSC Patran/Nastran) that permit the analysis of the deformation mechanisms of these materials under compressive loads. In the development of these models, a detailed multiscale study on the different factors affecting the response …


Characterization And Comparison Of Metallic And Ceramic Parts Fabricated Using Powder Bed-Based Additive Manufacturing Technologies, Jose Angel Gonzalez Jan 2017

Characterization And Comparison Of Metallic And Ceramic Parts Fabricated Using Powder Bed-Based Additive Manufacturing Technologies, Jose Angel Gonzalez

Open Access Theses & Dissertations

Additive manufacturing (AM), or layer-by-layer part fabrication, is enabling the materialization of ideas that were near to impossible to achieve in the past, while providing advantages that include reduced material footprint, increased complexity, reduced lead times, etc. AM has been integrated to highly specialized markets that include aerospace, military, automotive, biomedical, and prototyping.

Although an apparent growth is being witnessed across nearly all AM platforms, technologies with capabilities of producing metallic parts have arguably received the most widespread interest, with powder bed fusion (i.e. electron beam melting and selective laser melting). This class of AM technology produces parts by judiciously …


Design And Development Of A Foil Application Tool For A Foil Embedding Process In The Multi3d Manufacturing System, Betty Elizabeth Mckenzie Jan 2017

Design And Development Of A Foil Application Tool For A Foil Embedding Process In The Multi3d Manufacturing System, Betty Elizabeth Mckenzie

Open Access Theses & Dissertations

Additive manufacturing (AM) encompasses different technologies, including material extrusion 3D printing, a technology commonly referred to as fused deposition modeling (FDM), which is the focus of the work described in this manuscript. Additive manufacturing is a growing technology with many applications in numerous fields from the air force to medical offices. FDM is a process that uses thermoplastics, in this case polycarbonate (PC), where the PC is heated and selectively dispensed in a layer-by-layer process to create a 3D printed part. Currently, FDM systems have advantages over subtractive manufacturing or machining because cavities and other components (e.g., microchips, valves, and …


Development Of The Thermal Wire Embedding Technology For Electronic And Mechanical Applications On Fdm-Printed Parts, Daniel Abraham Marquez Jan 2016

Development Of The Thermal Wire Embedding Technology For Electronic And Mechanical Applications On Fdm-Printed Parts, Daniel Abraham Marquez

Open Access Theses & Dissertations

Additive Manufacturing (AM) has increased in popularity and attracted much attention from many fields such as automotive, aviation, aerospace, and even the fashion industry. Since the early 2000s, Fused Deposition Modeling (FDM) technologies have been the most popular in the AM world ("Wohlers Talk" Popularity of FDM). These technologies have been mainly used for building parts for prototype and structural type of applications such as a fixture for components or a housing for mechanisms.

With the current state of the FDM technologies, the functionality of the parts that are printed are limited to the applications listed before or simply just …


Effects Of Fabrication Conditions On Mechanical Properties Of Ti-6al-4v Fabricated By Powder Bed Fusion Additive Manufacturing, Paola Azani Jan 2016

Effects Of Fabrication Conditions On Mechanical Properties Of Ti-6al-4v Fabricated By Powder Bed Fusion Additive Manufacturing, Paola Azani

Open Access Theses & Dissertations

At the writing of this Thesis, additive manufacturing (AM) also known as 3D printing, has been popularized for its diversity in applications ranging from home and personal use, medical, industrial, consumer products, aerospace, architecture, automotive, military, fashion, food, art and more. Industries taking advantage of the design freedom and complexity offered by AM have exploded the growth of the technologies. Specifically, technologies that process metals using electron and laser beams have been recognized by the aerospace industry as a promising avenue for re-engineered components leading to reduced weight and improved engineering efficiencies for components like engine brackets and nozzles. However, …


Creating Multi-Functional G-Code For Multi-Process Additive Manufacturing, Efrain Aguilera Jr Jan 2016

Creating Multi-Functional G-Code For Multi-Process Additive Manufacturing, Efrain Aguilera Jr

Open Access Theses & Dissertations

Additive manufacturing (AM) started over thirty years ago and with it a manufacturing revolution that moves industrial production into the personal home. With recent interest shifting into multi-functional parts fabricated through AM technologies, unified systems are being developed. Merging different manufacturing technologies into one single machine is a challenge but undergoing research has shown promise in the development of multi-functional systems. Concurrent work is being done in the software, automation, and hardware aspect of multi-functional systems. An effort to use industry compatible Computer Aided Design (CAD) software to design multi-functional parts including circuits, micro-machining, and foil embedding then exporting and …


Modeling And Characterization Of Piezoelectric Based Multifunctional Structures, Ricardo Martinez Hernandez Jan 2016

Modeling And Characterization Of Piezoelectric Based Multifunctional Structures, Ricardo Martinez Hernandez

Open Access Theses & Dissertations

Continuous monitoring of high pressure and high temperature in energy system applications has been a developing research area in today’s energy sector. Multifunctional materials have the potential to provide real-time monitoring of structures where temperature and pressure sensing is critical to its performance and efficiency. In this study, multifunctional materials are studied by embedding piezoelectric materials with two ongoing technologies, woven fabric composites and additive manufacturing (AM). The AM technology allows the flexibility of embedding a sensor within the structure, all while not compromising the mechanical performance requirements. The “smart parts” are fabricated modifying the standard additive manufacturing process, using …


Process Monitoring In Additive Manufacturing Aimed Toward Part Qualification, Shakerur Ridwan Jan 2015

Process Monitoring In Additive Manufacturing Aimed Toward Part Qualification, Shakerur Ridwan

Open Access Theses & Dissertations

Additive Manufacturing (AM), or layer-by-layer part fabrication, has played a tremendous role in the maker culture by allowing ideas to be materialized with limited resources or knowledge in manufacturing. Various cutting edge AM technologies exist today that are used to create end-use parts; however, these technologies are still new and the processes have not gone through the rigorous evaluation process that traditional manufacturing (i.e. milling, stamping, casting) methods have been through. As a result, several important questions arise when looking to adapt AM technology, including control of the manufacturing process, effect of manufacturing process on part properties, level of variance …


Design And Development Of The Portable Build Platform And Heated Travel Envelope For The Multi3d Manufacturing System, Steven Daniel Ambriz Dec 2014

Design And Development Of The Portable Build Platform And Heated Travel Envelope For The Multi3d Manufacturing System, Steven Daniel Ambriz

Open Access Theses & Dissertations

The final product functionality of parts produced by Additive Manufacturing (AM) can, in part, be improved by the inclusion of multi-material capabilities. The “Multi3D system” that is under development at The University of Texas at El Paso uses material extrusion printing (or fused deposition modeling), solid conductor wire embedding, direct-write, component placement, and micromaching to enable multi-material fabrication. The Multi3D was designed to transport a workpiece between manufacturing stations via a six-axis robot, portable build platform (PBP), and a controlled temperature environment or chamber that travels to each manufacturing station. The heated travel envelope (HTE) was included to mitigate thermal …


Fused Deposition Modeling (Fdm) Fabricated Part Behavior Under Tensile Stress, Thermal Cycling, And Fluid Pressure, Mohammad Shojib Hossain Jan 2014

Fused Deposition Modeling (Fdm) Fabricated Part Behavior Under Tensile Stress, Thermal Cycling, And Fluid Pressure, Mohammad Shojib Hossain

Open Access Theses & Dissertations

Material extrusion based additive manufacturing (AM) technology, such as fused deposition modeling (FDM), is gaining popularity with the numerous 3D printers available worldwide. FDM technology is advancing from exclusively prototype construction to achieving production-grade quality. Today, FDM-fabricated parts are widely used in the aerospace industries, biomedical applications, and other industries that may require custom fabricated, low volume parts. These applications are and were possible because of the different production grade material options (e.g., acrylonitrile butadiene styrene (ABS), polycarbonate (PC), polyphenylsulfone (PPSF), etc.) available to use in FDM systems. Recent researchers are exploring other material options including polycaprolactone (PCL), polymethylmethacrylate (PMMA), …


Development Of A Thermal Imaging Feedback Control System In Electron Beam Melting, Emmanuel Rodriguez Jan 2013

Development Of A Thermal Imaging Feedback Control System In Electron Beam Melting, Emmanuel Rodriguez

Open Access Theses & Dissertations

The Electron Beam Melting (EBM) process is a promising technology in the rapid manufacturing of metal components. EBM has the potential to reduce the cost of metal parts by minimizing the use of raw materials and machining time. The EBM technology has several advantages over other additive manufacturing (AM) technologies of metal, such as manufacturing speed and mechanical properties of the finished parts. For the process to be accepted in the aerospace industry as a flight-ready manufacturing technology, however, improved control and feedback must be implemented in the building process for better part quality and uniform production in manufacturing. As …


Reducing Metal Alloy Powder Costs For Use In Powder Bed Fusion Additive Manufacturing: Improving The Economics For Production, Fransisco Medina Jan 2013

Reducing Metal Alloy Powder Costs For Use In Powder Bed Fusion Additive Manufacturing: Improving The Economics For Production, Fransisco Medina

Open Access Theses & Dissertations

Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for …


Three-Dimensional Structural Electronic Integration For Small Satellite Fabrication, Cassie Gutierrez Jan 2012

Three-Dimensional Structural Electronic Integration For Small Satellite Fabrication, Cassie Gutierrez

Open Access Theses & Dissertations

The ability to realize truly three-dimensional electronic circuits is complicated if not impossible using traditional fabrication techniques. Such techniques are limited to the use of two dimensional printed circuit boards (PCBs), and require various dissonant processes which exhaust time, volume and cost. Due to the nature of Additive Manufacturing (AM) such problems are diminished and in some ways completely overcome. Additive Manufacturing allows for a higher range of design freedom along conformal surfaces, as well as unit level customization; it is the threshold for embedded electronics, allowing for three-dimensional circuitry in ways traditional fabrication is unfeasible. In such ways, additive …


The Influence Of Build Parameters On The Microstructure During Electron Beam Melting Of Ti6al4v, Karina Puebla Jan 2012

The Influence Of Build Parameters On The Microstructure During Electron Beam Melting Of Ti6al4v, Karina Puebla

Open Access Theses & Dissertations

With the demand of devices to replace or improve areas, such as: electronic, biomedical and aerospace industries. Improvements in these areas of engineering have been in need due to the customer’s needs for product properties requirements. The design of components must exhibit better material properties (mechanical or biocompatible) close to those of any given product. Rapid prototyping (RP) technologies that were originally designed to build prototypes may now be required to build functional end-use products. To carry out the transition, from RP to rapid manufacturing (RM), the available materials utilized in RP must provide the performance required for RM. The …


Microstructural Architecture Developed In The Fabrication Of Solid And Open-Cellular Copper Components By Additive Manufacturing Using Electron Beam Melting, Diana Alejandra Ramirez Jan 2011

Microstructural Architecture Developed In The Fabrication Of Solid And Open-Cellular Copper Components By Additive Manufacturing Using Electron Beam Melting, Diana Alejandra Ramirez

Open Access Theses & Dissertations

The fabrication of Cu components were first built by additive manufacturing using electron beam melting (EBM) from low-purity, atomized Cu powder containing a high density of Cu2O precipitates leading to a novel example of precipitate-dislocation architecture. These microstructures exhibit cell-like arrays (1-3µm) in the horizontal reference plane perpendicular to the build direction with columnar-like arrays extending from ~12 to >60 µm in length and corresponding spatial dimensions of 1-3 µm. These observations were observed by the use of optical metallography, and scanning and transmission electron microscopy. The hardness measurements were taken both on the atomized powder and the Cu components. …


Conformal Electronics Packaging Through Additive Manufacturing And Micro-Dispensing, Richard I. Olivas Jan 2011

Conformal Electronics Packaging Through Additive Manufacturing And Micro-Dispensing, Richard I. Olivas

Open Access Theses & Dissertations

Realizing electronic systems that are conformal with curved or complex surfaces is difficult if not impossible with conventional fabrication techniques, which require rigid, two dimensional, printed circuit boards (PCB). Flexible copper based fabrication is widely available commercially providing conformance, but not simultaneously stiffness. As a result, these systems are susceptible to reliability problems if repeatedly bent or stretched. The integration of Additive Manufacturing (AM) combined with Direct Print (DP) micro-dispensing can produce shapes of arbitrary and complex form that also allows for 1) miniature cavities for insetting electronic components and 2) conductive traces for electrical interconnect between components. The fabrication …