Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 55

Full-Text Articles in Engineering

Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen Jun 2023

Cooled Liquid Rocket Thrust Chamber, Benjamin Gibson, Kealan Frederick Harris, Ryan Frank Schackel, Bjorn Thorsen

Mechanical Engineering

Cooling may affect the thrust output of a small-scale rocket. Little research is published about small-scale rocket performance. We hypothesize the thrust produced varies as the amount of cooling varies. To facilitate assessing this hypothesis, we have designed and built a liquid rocket engine rated for at approximately 25 lbf of thrust. Our objective was to build in parallel with Cal Poly Space Systems, who built a rocket engine with similar specifications except without cooling. Our challenge is to integrate film cooling, so that the effects of cooling may be compared to Cal Poly Space System’s engine which has …


Flexible Water Cooling, Joshua Terlaje, Andrew Lin, Nicholas Morales, Tanner Parrott Jun 2023

Flexible Water Cooling, Joshua Terlaje, Andrew Lin, Nicholas Morales, Tanner Parrott

Mechanical Engineering

The goal of this project is to develop and deploy a water-cooling system to reduce the danger of heat exhaustion among communities of farmworkers. Currently, it is difficult to keep chilled water available throughout the workday when using portable water coolers. The idea uses a refrigeration system to chill the water supply by using the power take-off (PTO) on farm equipment and a corresponding generator to get around this restriction.

The project places a strong premium on keeping the chilled water supply at a maximum temperature of 59°F to ensure compliance with the California Department of Industrial Relations' requirements. Each …


Portable Drinking Water Cooler And Dispenser, Gustavo Hernandez-Lerena, Erik Torres, Caleb Francis Parham, Terry Leung Apr 2023

Portable Drinking Water Cooler And Dispenser, Gustavo Hernandez-Lerena, Erik Torres, Caleb Francis Parham, Terry Leung

Mechanical Engineering

This document serves as the comprehensive report for the testing and building for the Portable Water-Cooling System by team AquaCool. Team AquaCool is comprised of four mechanical engineers with a passion to help the agricultural industry in their efforts to keep the health of the workers at their peak. The four engineers who partook in helping the farm workers are as follows: Caleb F. Parham, Erik Torres, Gustavo Hernandez-Lerena, and Terry Leung. To reduce the risk of heatstroke and other unwanted effects from the harsh working conditions during summer, a small and portable system was built to help in the …


Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle Jun 2022

Mmteg Heatsink Design, Peyton Nienaber, Kadin Feldis, Alec Savoye, Jack Waeschle

Mechanical Engineering

In this document, Cal Poly Senior Design Team F16 presents a summary of its work developing a suitable heatsink for Gas Technology Institute’s Methane Mitigation Thermoelectric Generator. After several months of iterating between experimental testing and simulated heat transfer, a suitable prototype was selected for use in further refining simulation parameters. This was called the structural prototype and it allowed Team F16 to confirm several remaining unknowns relating to component thermal conductivity. All documentation of this process can be found in Preliminary, Critical, and Interim Design Review documents (PDR, CDR, IDR), included in this report. Having a realistic model …


Insulated Solar Electric Cooker With Phase Change Materials, Weijun Zhao, Jake Lung, Owen Chu, Sarah Melzer Jun 2022

Insulated Solar Electric Cooker With Phase Change Materials, Weijun Zhao, Jake Lung, Owen Chu, Sarah Melzer

Mechanical Engineering

This Senior Project Report documents the development and design process of the Insulated Solar Electric Cooker with a Phase Change Material (ISEC w/ PCM). In this project, we developed a PCM assembly that can be integrated into an existing ISEC system which utilizes two 100 W solar panels. This report details the use of a nitrate salt solution of 60% NaNO3 and 40% KNO3 and demonstrates its potential as a viable form of thermal storage solution for cooking. We found that only 1kg of PCM is able to retain its heat for around 5 hours after power removal and believe …


Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen Dec 2021

Optimized Tip Cooling Using Am Process, Alberto H. Gamez, Lourdes Sarmiento Martinez, Andrew Van Bogelen

Mechanical Engineering

This Final Design Review (FDR) reports on the senior design project undertaken by our team of mechanical engineering seniors at California Polytechnic State University, San Luis Obispo. This project seeks to use the additive manufacturing process to improve the existing design of a Taurus 60 gas turbine injector tip. The current injector tip is owned by Solar Turbines, a designer and manufacturer of gas turbines for electric generation, propulsion, as well as natural resource transportation. The challenge at hand is to design a new injector tip that will be reliable for at least 60,000 hours and provide ease of replacement, …


Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle Jun 2021

Tensile Testing Environmental Chamber – Structural, Michael Ingel, Erik Soldenwagner, Austin Marshall, Lauren Schirle

Mechanical Engineering

Environmental chambers for tensile testing machines are used to study how a multitude of materials behave in extreme temperatures. These chambers provide the necessary information to innovate cutting edge technology for materials in fields such as aerospace. These chambers are often heavy and expensive requiring a significant amount of time and money just in the installation process alone. This report will serve to outline and define the design and fabrication of an environmental chamber, conducted by a team of four senior mechanical engineering students at California Polytechnic State University, San Luis Obispo. The goals of the project include a low-weight …


Consumer-Ready Insulated Solar Electric Cooker, Simon Ford, Sachin Gokhale, Brendan Lynn, Richard Nguyen Jun 2021

Consumer-Ready Insulated Solar Electric Cooker, Simon Ford, Sachin Gokhale, Brendan Lynn, Richard Nguyen

Mechanical Engineering

An insulated solar electric cooker, or ISEC, converts solar energy into electricity to cook food, boil water, provide heat or even help charge batteries. In this project, the focus is an ISEC with a phase change material (PCM) that helps store heat when the solar energy input is minimal, such as after the sun has set. Although a successful ISEC already exists that utilizes PCM, this product can be improved in many ways. The specific revisions investigated in this report are the improvement of the thermal efficiency with the implementation of a vacuum-sealed outer pot, the reduction of the overall …


Tensile Environment Chamber, Cameron Ngai, Trent Hamilton, Mitchell Carroll, Jack Molitor Jan 2021

Tensile Environment Chamber, Cameron Ngai, Trent Hamilton, Mitchell Carroll, Jack Molitor

Mechanical Engineering

This project created the heating system, cooling system, and control system for an environmental chamber for a tensile test machine in the Cal Poly Composites Lab. This chamber allows for students to test material properties under a variety of thermal conditions. This project was done in collaboration with a team working on the structural aspect of the chamber. While consumer environmental chambers are on the market, they often cost more than $50,000. Additionally, our chamber conforms to further size and weight constraints. Because of this constraint, many conventional techniques and components used for these chambers are not feasible for our …


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team …


Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie May 2020

Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie

Mechanical Engineering

Executive Summary

An oxygen consumption calorimeter works by measuring the heat release rate of a burning substance. This value is calculated by measuring the oxygen and byproducts in smoke from afire.In order to get these values two types of sensors were used. A non-dispersive infrared sensor (NDIR) that measured CO and CO2 and a zirconium O2 sensor were used to find their respective gas concentrations.The design to calculate the heat release rate is focused on maximizing sensor accuracy and portability while simplifying the manufacturing by using off-the-shelf components. The goal included making the system simple to recreate and package in …


Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling Dec 2019

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling

Mechanical Engineering

The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation …


Waste Gasification, Glyn D. Lewis, Nash Taylor, Nicholas L. Ordonez, David S. Mccallum Dec 2019

Waste Gasification, Glyn D. Lewis, Nash Taylor, Nicholas L. Ordonez, David S. Mccallum

Mechanical Engineering

This document summarizes the work the IGT Team has conducted on the topic of waste to energy gasification over the Cal Poly Winter, Spring, and Fall quarters of 2019. The project is being carried out by four Cal Poly Mechanical Engineering students: Nash Taylor, Glyn Lewis, David McCallum, and Nicholas Ordonez and the sponsor of this project is Tod duBois. The team’s original goal was to successfully create a system that compiles residential solid waste on a small scale, gasifies it, and measures the typical syngas outputs, so that the team may assess the viability of gasification of household waste …


Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz May 2019

Insulated Solar Electric Cooker With Phase Change Thermal Storage Medium, Justin Brett Unger, Nathan Robert Christler, Matthew Weeman, Marcus Edward Strutz

Mechanical Engineering

This final design review document outlines the senior design project carried out by a team of four mechanical engineering students at the California Polytechnic State University – San Luis Obispo under the sponsorship of Dr. Peter Schwartz of the Cal Poly Physics department. The aim of this project was to improve upon the design of previously developed Insulated Solar Electric Cookers (ISECs) by adding a thermal storage system to allow for quicker cook times and the ability to cook food at non-peak solar hours. The team’s goal was to develop a working prototype utilizing a phase change medium as the …


Vaccine Cooler For The Global Poor, Benjamin J. Larson, Cooper E. Gibson, Eilbron Younan, Cody R. Volk May 2019

Vaccine Cooler For The Global Poor, Benjamin J. Larson, Cooper E. Gibson, Eilbron Younan, Cody R. Volk

Mechanical Engineering

Cal Poly physics professors Peter Schwartz and Nathan Heston approached the Solar Freeze team with the problem that remote communities in Africa have limited access to modern-day medicine or vaccines. They suggested that we try and design a cooling device that can keep vaccines cold for multiple days at a time while the medicine is transported to remote villages. Currently, there are vaccine cooler products on the market, but most of them are very expensive or lack portability. Peter and Nate have tasked the Solar Freeze team to come up with a less expensive solution that is also portable and …


Portable Thermoelectric Refrigerator, Cassandra Danielle Beck, Ryan Theodore Gelinas, Joshua Michael Dimaggio, Zachary David Wilson Dec 2018

Portable Thermoelectric Refrigerator, Cassandra Danielle Beck, Ryan Theodore Gelinas, Joshua Michael Dimaggio, Zachary David Wilson

Mechanical Engineering

This project created a versatile thermoelectric refrigerator that can be used via a wall outlet. The product is durable and effective. The refrigerator is functional in any ambient temperature, and uses thermoelectric cooling, and work from a standard 120V power outlet. By understanding existing products’ limitations and strengths, this project produced a product that outperforms what’s currently on the market. Many of the existing products’ operating temperature is dependent on the ambient temperature of the surroundings, which is a large drawback. Additionally, most of them take a long time to reach their lowest temperature, around 3 hours. One team member, …


Driver Cooling System, Joseph Fatin Bolous, Jake Donald Deboer, Alvin Theodore Lau Jun 2018

Driver Cooling System, Joseph Fatin Bolous, Jake Donald Deboer, Alvin Theodore Lau

Mechanical Engineering

This document provides our Final Design Review (FDR) for the Driver Cooling System Project. It contains our background research, which includes current product research, technical research, and information on our sponsor’s needs as a customer as well our manufacturing process, test results, and final design. We created a problem statement to define the scope of the project, discuss sponsor and consumer needs and wants, and technical specifications. After brainstorming, we ultimately selected a thermoelectric cooling system (TEC) after presenting our Preliminary Design Report and Critical Design Report. We built the final prototype, as can be seen in the manufacturing plan, …


Upgrading The Sr-30 Miniature Turbojet For Adaptable Exhaust, Shannon Ferreira, Erin Mcmurchie, Peter Pratt Jun 2018

Upgrading The Sr-30 Miniature Turbojet For Adaptable Exhaust, Shannon Ferreira, Erin Mcmurchie, Peter Pratt

Mechanical Engineering

The California Polytechnic State University, San Luis Obispo (Cal Poly, SLO) Aerospace Department is requesting a variable nozzle adaptation for their SR-30 turbojet engine. The nozzle is intended for laboratory use in sophomore and junior level courses to supplement instruction on the effects that exhaust behavior has on the performance of propulsion technologies. Topics covered during a performance study of the SR-30 turbojet engine will include, but are not limited to: Brayton Cycle analysis, turbojet operation in ideal and non-ideal test conditions, instrumentation limitations, and basic nozzle operation. The SR-30 turbojet engine is similar in design and operation to engines …


3-Dimensional Automated Heat Flux Calibration Device, Victor Raul Chacon, David Madison Morrisset, Alex Michael Schnorr, Kevin Scott Jun 2018

3-Dimensional Automated Heat Flux Calibration Device, Victor Raul Chacon, David Madison Morrisset, Alex Michael Schnorr, Kevin Scott

Mechanical Engineering

This document aims to describe the problems in current radiant heat source heat flux calibration techniques and the approach our team took to solve them through automation. The following sections outline the basic premise of the problem we addressed and who our end product benefited. The proceeding sections addresses the research that we have performed regarding heat flux measurements and automation. This research includes current solutions – mostly partial solutions for problems that are similar but not exactly like ours. Following the background research, we define objectives, with specific details that outline how we evaluated different possible solutions, and how …


Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones Jun 2018

Heat Flow Characterization Of Speakers, Sabrina M. Gough, Lydia K. Hedge, Nicolas M. Jones

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Transient Heat Storage Systems, Ian M. Sweeney, Brock M. Johnson, Todd K. Lundberg Jun 2018

Transient Heat Storage Systems, Ian M. Sweeney, Brock M. Johnson, Todd K. Lundberg

Mechanical Engineering

Phase change materials (PCM) have many applications in transient cooling systems, including those with high transient heat loads and low duty cycles. These materials allow a system to remain within a narrow temperature range with a relatively low weight compared to conventional heat sinks or high-power cooling systems. This senior capstone project includes the design of a PCM based thermal energy storage system to integrate into an existing cooling loop, as well as a determination of viable PCM’s for the application. This report contains the necessary information to build the test apparatus.


Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo Jun 2017

Mini High Temperature Test Unit Final Design Report, Kevin Liu, Juan P. Castillo

Mechanical Engineering

Lawrence Livermore National Laboratory has invested considerable effort to develop new standard for nuclear grade HEPA filters that can withstand high temperatures along with methods to optimally test not only the experimental filter media, but also new frame seals and media binders. Therefore, LLNL in collaboration with Cal Poly has designed and built a Mini High Temperature Testing Unit (MHTTU) to recreate conditions observed during a fire and to test different materials in an effective, inexpensive, regulated and reliable method. The existing prototype was unable to achieve the ideal testing conditions of 1000°F air at the low flow rates of …


Jfs Turbine Engine For Cal Poly Mechanical Engineering Department, Dorian Capps, Zoe Kai Tuggle Jun 2017

Jfs Turbine Engine For Cal Poly Mechanical Engineering Department, Dorian Capps, Zoe Kai Tuggle

Mechanical Engineering

This project concerns the development of a gas turbine engine laboratory activity for use in one of Cal Poly’s technical elective courses in the Mechanical Engineering Department, ME 444: Combustion Engine Design. The class is taught by Dr. Patrick Lemieux, who is also in charge of the on-campus engines lab where the turbine engine will be installed. The engine itself is a JFS-100-13A turboshaft engine that will be coupled to an electric dynamometer inside of the dyno test cell. Students taking the ME 444 class, likely starting in Winter Quarter of 2018, will be able to perform hands-on experiments using …


Additive Manufacturing For Post-Processing, Nathan D. Goodwin, Andrew Furmidge Jun 2017

Additive Manufacturing For Post-Processing, Nathan D. Goodwin, Andrew Furmidge

Mechanical Engineering

Additive Manufacturing for Post Processing (AMPP) is a team comprised of two Cal Poly Mechanical Engineering students: Nathan Goodwin and Andrew Furmidge. The project is focused in the area of metal additive manufacturing (AM) machines, which are still a developing technology. Improvements have been made to the quality of the machines in the past years, but many limitations still exist. One of these is the inability to print parts that are larger than the build volume. In an effort to solve this problem, whole parts are divided into pieces that are printed individually. This team’s senior project is to create …


Photovoltaic Cooking In The Developing World, Tyler Watkins, Christopher O'Day, Omar Arriaga Dec 2016

Photovoltaic Cooking In The Developing World, Tyler Watkins, Christopher O'Day, Omar Arriaga

Mechanical Engineering

The challenge of clean cooking is faced by hundreds of millions of people worldwide. We present a cooking technology consisting of a solar panel directly connected to an electric heater in a well-insulated chamber. Assuming continued decrease in solar panel prices, we anticipate that in a few decades Solar Electric Cooking technologies will be the most common cooking technology for the poor. Appropriate use of insulation reduces the power demand making low-power Insulated Solar Electric Cooking systems already cost competitive.


Final Design Report: Allergen Mixing Assistant (Ama) Micro-Refrigeration Redesigning, Mitchell Parks, Minwoo (Michael) Suh Dec 2016

Final Design Report: Allergen Mixing Assistant (Ama) Micro-Refrigeration Redesigning, Mitchell Parks, Minwoo (Michael) Suh

Mechanical Engineering

Abstract

Allergen Mixing Assistant (AMA) by Xtract Solutions is a device designed to more “effectively refrigerate, organize, and mix allergenic extracts”. Although Xtract Solutions intended the product to be fully automated, the company has decided against its automation and declared its current design as a minimum viable product whose components are too expensive, difficult to source and complex. Therefore, Cal Poly AMA design team - Mitchell Parks and Minwoo Suh - has decided to replace these expensive components with much more economical alternatives as shown below:

Stirling cooler

Thermoelectric (Peltier) cooler

Custom Arduino

Controller Card

TEC Thermostat *** …


Biofuel Gasification For Residential Heating, Bryan Duke, Courtney Mcintosh, Jeron Hogan Dec 2016

Biofuel Gasification For Residential Heating, Bryan Duke, Courtney Mcintosh, Jeron Hogan

Mechanical Engineering

No abstract provided.


Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon Jun 2016

Fluid Analysis In Solar Heat Pipes, Ben Krumholz, Michael Agavo, William Dundon

Mechanical Engineering

Evacuated tube solar collectors are efficient systems that use heat pipes to facilitate heat transfer. They use incoming solar radiation to heat water. Professor Mason Medizade tasked the team with choosing a component of the system to research and test its influence on system performance. The team investigated the working fluid that runs through the heat pipes. Distilled water, acetone, and ethanol at a range of fill volumes form 1 mL to 11 mL were tested. The team's goal was to find a volume for each fluid to maximize performance of the system. Performance was defined as average temperature rise …


Micro Debris Generator, Gordan Bradaric, Ross Byers, Stephen Quanci Jun 2016

Micro Debris Generator, Gordan Bradaric, Ross Byers, Stephen Quanci

Mechanical Engineering

This senior project team at Cal Poly consisting of Stephen Quanci, Gordan Bradaric, and Ross Byers has been commissioned by Erik Brown of Lawrence Livermore National Labs to create a way to reliably and consistently entrain microscopic particles into the hot HTTU flow. These particles will be used to compare the loading rates of new HEPA filters by measuring the pressure drop across the filter. The generated particles would simulate typical conditions in which these HEPA filters are expected to operate, namely fine ash. The particles used for loading the filter are intended to simulate the particulate reaching the LLNL …


Efficiency Testing Of An Electronic Speed Controller, Grace Cowell, Matthew Hudson, Marcus Pereira Jun 2016

Efficiency Testing Of An Electronic Speed Controller, Grace Cowell, Matthew Hudson, Marcus Pereira

Mechanical Engineering

This project required the development of a rig that could experimentally determine the efficiency of an Electronic Speed Controller (ESC). The selected design focuses on measuring the losses due to heat from the device and comparing this to its input power. The selected design is a flow rig that utilizes the heat equation q=ṁcpΔT. The rig provides a steady state measurement of the ESC heat output by passing a known mass flow rate of air across the ESC and measuring the temperature difference. It uses a flowmeter to determine ṁ, thermocouples to determine ΔT, and a table lookup to determine …