Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Heat Transfer, Combustion

Institution
Keyword
Publication Year
Publication
File Type

Articles 1 - 30 of 401

Full-Text Articles in Engineering

Exploring A Platinum Nanocatalytic Microcombustion-Thermoelectric Coupled Device, Dylan Moore Mcnally Dec 2020

Exploring A Platinum Nanocatalytic Microcombustion-Thermoelectric Coupled Device, Dylan Moore Mcnally

Theses and Dissertations

This work aimed to create a first-generation power device for eventual application to portable electronics. A platinum nanoparticle catalytic substrate was employed in a microcombustion-thermoelectric coupled (MTC) device for the purpose of chemical-to-electrical energy conversion. Multiple microcombustion reactors were designed, fabricated, and investigated. Most importantly, the reactor configuration was designed to accommodate thermoelectric generators (TEGs) for power production. Temperature studies with catalytic combustion of methanol-air fuel mixtures were used to evaluate the thermal power generation performance of each reactor. The final reactor design enabled ignition at room temperature with the ability to achieve repeat catalytic cycles upon subsequent exposure to ...


A Study On Latent Thermal Energy Storage (Ltes) Using Phase Change Materials (Pcms) 2020, Ritvij Dixit Dec 2020

A Study On Latent Thermal Energy Storage (Ltes) Using Phase Change Materials (Pcms) 2020, Ritvij Dixit

Masters Theses

The significant increase in energy requirements across the world, provides several opportunities for innovative methods to be developed to facilitate the storage and utilization of energy. The major energy demand is in the form of electrical energy for domestic as well as industrial sectors, a large part of which are the heating and cooling requirements. Appropriate utilization of thermal energy storage can effectively aid in reducing the electrical demand by storage and release of this thermal energy during peak hours.

Thermal Energy Storage using Phase Change Materials (PCMs) is an attractive method of energy storage, with a wide variety of ...


Development Of A Tiny House Design Tool To Increase Safety, Efficiency, And Cost-Effectiveness, Michael Joseph Stratton Ii Dec 2020

Development Of A Tiny House Design Tool To Increase Safety, Efficiency, And Cost-Effectiveness, Michael Joseph Stratton Ii

Masters Theses

A growing number of people are choosing to live more sustainably, and this is commonly done through living in an extremely small house, also called a “tiny house”. There is no set definition for a tiny house, but it typically refers to a structure less than 500 ft2, sometimes built by the homeowner, and frequently built on a travel trailer.

The popularity of tiny houses has increased over the years due to different television shows, internet videos, and photo sharing websites, but the technical details are rarely covered, which is why this study examines the structural, stability, weight, and thermal ...


Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown Dec 2020

Heat Transfer Modeling And Optimization Of A Carbonized Microvascular Solar Receiver, Taylor Brown

Boise State University Theses and Dissertations

Concentrating solar power is an emerging renewable energy source. The technology can collect and store thermal energy from the sun over long durations, generating electricity as needed at a later time. Current CSP systems are limited to a maximum operational temperature due to constraints of the working fluid, which limits the maximum possible efficiency of the system. One proposed pathway forward is to utilize a gas phase for the working fluid in the system such as supercritical carbon dioxide.

A composite gas phase modular receiver is being developed by researchers at Boise State University and the University of Tulsa. The ...


Molecular Mechanisms And Design Of Hydrogen-Bonded Materials For Thermal Applications, Jinlong He Dec 2020

Molecular Mechanisms And Design Of Hydrogen-Bonded Materials For Thermal Applications, Jinlong He

All Graduate Theses and Dissertations

Heat transfer at the nanoscale plays an important role in determining the reliability and performance of many innovative advanced materials technologies such as nanoelectronics, semiconductor, biomedical devices, polymers, and composites. Extensive efforts have been made to design materials with extraordinary thermal properties. However, fundamental understanding of heat transfer in many of these materials is still not lacking, because the thermal transport processes are governed by several factors including molecular morphology and chemical bonding. Among these factors, the atomic bonding between two dissimilar materials or within single materials is of particular interest due to its ubiquity and importance in physical processes ...


Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami Aug 2020

Cooking Systems Using Aluminum Foam, Ryan Tetsuo Mizukami

Physics

In developing countries, the use of wood burning fires for cooking is cause for illness and death. With this in mind, research was conducted to develop a solar cooking device capable of cooking of soup within 15 mins in order to reduce the negative impacts of cooking with wood. Current methods of solar-based cooking, such as solar concentrators and solar tube ovens, are impractical. A small solar panel is a cost-effective way to produce energy but will not produce enough power to cook within a reasonable amount of time. Even if it is assumed that all of the energy produced ...


Raysun's Infrared Raisin Dryer, Lucas Kensinger, Saraith Aispuro, Joe Vanacore Jun 2020

Raysun's Infrared Raisin Dryer, Lucas Kensinger, Saraith Aispuro, Joe Vanacore

General Engineering

The RaySuns senior project team was tasked with lowering the drying costs of raisins for River Ranch Raisins. In doing so, we explored several options for cutting costs: utilizing automation and exploring new drying technologies were our primary focus. We eventually planned a modular infrared heating mechanism which would be easy to automate in future projects. After manufacturing and testing an infrared heating mechanism, it was found that infrared drying could significantly cut costs versus the previous natural gas fired dryer tunnels while leaving room for automation. The infrared dryer was also shown to have the potential to create high-quality ...


Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom Jun 2020

Design For Additive Manufacturing, Michael Charonnat, Leonardo Franco-Muñoz, Sam Noble, J.P. Purdom

Mechanical Engineering

This document outlines the critical design details and timeline for the Design for Additive Manufacturing Senior Project sponsored by Solar Turbines, Inc. The scope of this project encompasses the redesign of two of Solar Turbine’s cast parts for metal additive manufacturing in order to minimize lead time, cost, and weight. With the overall objective of performing in-depth analysis exploring affordability & feasibility, this redesign process will aid Solar Turbines in expanding their knowledge of Design for Additive Manufacturing principles and enable them to further incorporate the use of additive manufacturing into their production processes. The first part that the team ...


Analysis Of Burning Wood In The Transient State And The Application To Structural Design, Roberta Veliz, Kimberly Guzman Jun 2020

Analysis Of Burning Wood In The Transient State And The Application To Structural Design, Roberta Veliz, Kimberly Guzman

Architectural Engineering

Determining the extent of the contribution of exposed timber on compartment fire dynamics in open floor plans is a complex process. Designers traditionally used compartmentalization design methods which create spaces where flashover is likely, given the fuel load and ventilation conditions. However, due to the large geometric dimensions and spread of fuel, fires in open floor plans are more likely to remain as localized or traveling fires. As such, an understanding of not only ignition potential but also flame spread is critical to characterizing the contribution of exposed timber. An integral step in characterizing the potential contribution is through an ...


Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang May 2020

Development And Application Of Elliptic Blending Lag K-Omega Sst Standard And Wall-Distance-Free Turbulence Model, Wenjie Shang

Engineering and Applied Science Theses & Dissertations

In recent decades, Computational Fluid Dynamics (CFD) has become the most widely used technology to understand the fundamental complex fluid dynamics of turbulent flows as well as for modeling of turbulent flows in industrial applications. In industrial applications, the widely used methodology is to solve Reynolds-Average Navier-Stokes Equations (RANS) equations in conjunction with a turbulence model since it strikes a balance between accuracy and computational cost compared to other high fidelity approaches namely the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS), There are a large number of turbulence models proposed in past five decades, majority of them are ...


Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie May 2020

Portable Calorimeter For Fire Experiments, Kayla Collins, Kara Hewson, Christopher Chen, Joel Keddie

Mechanical Engineering

Executive Summary

An oxygen consumption calorimeter works by measuring the heat release rate of a burning substance. This value is calculated by measuring the oxygen and byproducts in smoke from afire.In order to get these values two types of sensors were used. A non-dispersive infrared sensor (NDIR) that measured CO and CO2 and a zirconium O2 sensor were used to find their respective gas concentrations.The design to calculate the heat release rate is focused on maximizing sensor accuracy and portability while simplifying the manufacturing by using off-the-shelf components. The goal included making the system simple to recreate and ...


Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan Mar 2020

Detonation Confinement In A Radial Rotating Detonation Engine, Kavi Muraleetharan

Theses and Dissertations

Radial Rotating Detonation Engines (RRDE) have provided an opportunity for use of a pressure-gain combustor in a more compact form compared to an axial RDE. A successfully tested RRDE has operated over a wide range of test conditions and produced detonation modes with one, two, and three waves. The presence of multiple waves located the detonation waves to the outer radius, while one wave modes operated closer to the inner radius. Locating the detonation wave closer to the inner diameter resulted in less time for combustion prior to the radial turbine. Subsequently, this tended to decrease efficiency. To attempt to ...


Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny Mar 2020

Design And Analysis Of A Compact Combustor For Integration With A Jetcat P90 Rxi, Daniel Holobeny

Theses and Dissertations

Ultra Compact Combustors are a novel approach to modern gas turbine combustor designs that look to reduce the overall combustor length and weight. A previous study integrated an Ultra Compact Combustor into a JetCat P90 RXi turbine engine and achieved self-sustained operation with a length savings of 33% relative to the stock combustor. However, that combustor could not operate across the full stock engine performance range due to flameout at increased mass ow rates as reactions were pushed out of the primary zone. To ensure reactions stayed in the primary zone, a new design with a larger combustor volume was ...


Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr. Mar 2020

Effects Of High Freestream Turbulence And Conduction On Film Cooling Effectiveness Of Shaped Holes, Richard A. Macias Jr.

Theses and Dissertations

With technological advancements allowing higher turbine temperatures, film cooling continues to be an important research area. The Film Cooling Rig (FCR) was fitted with a turbulence generator to vary freestream turbulence intensity and length scale, enabling the effects of high freestream turbulence on overall effectiveness to be studied. A cylindrical hole and laidback fan-shaped hole were investigated over a range of Advective Capacity Ratio (ACR) for freestream turbulence intensities of 2%, 10%, and 15%. For a given ACR, increasing the turbulence intensity resulted in lower overall effectiveness values due to the larger heat transfer coefficient that comes from turbulent ow ...


Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes Jan 2020

Electrification Of Domestic Hot Water To Aid The Integration Of Renewable Energy In The California Grid, Alejandro Cervantes

HSU theses and projects

Water heating in residential buildings, also known as domestic hot water (DHW), is the third largest use of energy after appliances and space conditioning. About 90% of the residential buildings in the state use natural gas fueled water heaters, 6% use electricity, and a small percent use liquefied petroleum gas (LPG) or solar water heaters. The current energy use associated with residential water heating is small relative to the total amount of energy consumption in the residential building sector, but it is still a contributor of greenhouse gas (GHG) emissions. Improving hot water systems can be beneficial for bill customer ...


Detailed Study Of Flow And Surface Heat Transfer Enhancement Mechanism In The Presence Of Dimples And/Or Protrusions, Gaurav Gupta Jan 2020

Detailed Study Of Flow And Surface Heat Transfer Enhancement Mechanism In The Presence Of Dimples And/Or Protrusions, Gaurav Gupta

Electronic Theses and Dissertations, 2020-

Recent advancements in material technology have led to the development of non-porous negative Poisson's ratio (NPR) materials (also called auxetic structures) by making spherical inline dimples on both sides of an elastic sheet. Manufacturing technologies such as 3-D printing and additive manufacturing paved the way to realize the complex shapes needed to achieve NPR behavior. These materials are desirable in many engineering applications, especially in the gas turbines hot-gas-path, due to their unique properties. In the current study, an effort is made to understand the flow physics and surface heat transfer mechanism for channel flow having one wall with ...


Forge Burner, Caleb Desjardins Jan 2020

Forge Burner, Caleb Desjardins

All Undergraduate Projects

Can small scale blacksmithing operations achieve a level of efficiency in their forge comparable to that of a large scale industry? The causes for the lack of efficiency needed to be pinpointed, and then the geometry of the existing design for the burner could be changed to fix the underlying issues, while still maintaining functionality. The problems with the previous design is the geometry of the intake giving an unknown air/fuel ratio, and the attachment of to the forge allowing the intake air to be contaminated by exhaust gasses. A burner needed to be designed that would solve these ...


Measured And Modeled Performance Of A Spring Dominant Free Piston Engine Generator, Ramanjaneya Mehar Baba Bade Jan 2020

Measured And Modeled Performance Of A Spring Dominant Free Piston Engine Generator, Ramanjaneya Mehar Baba Bade

Graduate Theses, Dissertations, and Problem Reports

Free Piston Engine Generators (FPEG) directly convert the reciprocating piston motion into electricity by using a linear alternator. Unlike conventional engines with piston motion restricted by a crankshaft mechanism, the FPEG piston motion is constrained by the energy available in the system. When stiff springs are considered in the design, the FPEG system attains high frequency with high power and efficiency. The main objective of this research was to model stiff spring-assisted FPEG system dynamics and performance accurately, and to apply the modeling results to the development of a 1kW, spark ignited, natural gas fueled, FPEG experimental prototype. The experimental ...


Experimental, Computational And Analytical Studies Towards A Predictive Scenario For A Burning Accident, Furkan Kodakoglu Jan 2020

Experimental, Computational And Analytical Studies Towards A Predictive Scenario For A Burning Accident, Furkan Kodakoglu

Graduate Theses, Dissertations, and Problem Reports

Historically, accidental gas and dust explosions constitute one of the major hazards to both personnel and equipment in the process industries. The current knowledgebase on such explosions does not provide an acceptable level of risk. Therefore, novel preventive mining/fire safety strategies, based on a rigorous predictive scenario for burning accidents, are critically needed. The present dissertation is devoted to such a predictive scenario, with a particular focus on the flame and pressure evolutions in explosions encountered in an enclosure with or without obstructions. The experimental component of this dissertation comprises a series of experiments on explosion venting. Specifically, the ...


Zips Precious Plastics: Plastic Extruder, Patrick Cole Jan 2020

Zips Precious Plastics: Plastic Extruder, Patrick Cole

Williams Honors College, Honors Research Projects

This project's goal was to design and build an affordable desktop filament extruder that can precisely and consistently extrude filament to a certain tolerance acceptable for 3D printers using wasted printing material. The group is partnering with an on campus organization focusing on engineering applications for sustainable futures. Zips Precious Plastics is a student run design group that intends to bring an innovation space on campus to help educate students about the importance of a closed looped system within plastic manufacturing.


Rocket Motor Nozzle, Corey Hillegass Jan 2020

Rocket Motor Nozzle, Corey Hillegass

Williams Honors College, Honors Research Projects

For this honors research and senior design project, the authors will research, analyze, and manufacture a rocket motor nozzle for the Akronauts rocket design team. This research and design project will improve how the rocket design team will decide and manufacture nozzles going forward. The impact of this improvement allows the rocket design team to take steps toward being self-sustaining by manufacturing student designed parts as opposed to commercially bought parts. This will not only be successful in increasing student impact on future designs, but also provides a technical challenge for the authors and will present as an impressive feat ...


Zips Electric - Cooling System, Guan-Bok Kwok Jan 2020

Zips Electric - Cooling System, Guan-Bok Kwok

Williams Honors College, Honors Research Projects

I am working with Zips Electric Racing to design a new cooling system for the ZER-20 car. The new cooling system will be more efficient and effective than the current design. We will investigate lighter materials with better thermal conductivity. Flow rate will also be optimized to meet the system’s needs. Also calculations and testing will be completed to determine if a fan is necessary. To adapt to the new proposed chassis, it is likely that the radiator must be mounted outside of the frame. If this is necessary, we will also design composite side pods to conceal and ...


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be ...


Assessment And Improvement Of Computational Fluid Dynamics Methods For Separated Turbulent Flows At Low Reynolds Numbers, Tom Mancuso Jan 2020

Assessment And Improvement Of Computational Fluid Dynamics Methods For Separated Turbulent Flows At Low Reynolds Numbers, Tom Mancuso

Dissertations, Master's Theses and Master's Reports

This study investigates the accuracy of Computational Fluid Dynamics (CFD) models to predict heat transfer in turbulent separated flows at low Reynolds numbers. A novel improvement of a Scale Adaptive technique is also presented. A spectrum of turbulence models is used to simulate flow and heat transfer of two geometries; fully developed flow through a staggered tube bank and a square prism in cross flow. Experimental data for both local heat transfer and velocity data are available in the literature for these cases and have been used extensively evaluate various CFD methods. Six unsteady models were used and the results ...


Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi Jan 2020

Development Of A Process For Thermal And Mechanical Modelling Of Screw-Driven Pellets Extrusion, Kaixiang Shi

Master’s Theses

The overall goal of the thesis project is to develop a process for thermal and mechanical modelling of the screw-driven pellets extrusion process, and applying the model results to design extruder temperature and flow rate controllers.

The proposed extruder is designed for metal 3D printing. The device demonstrates great potential in tackling some of the major issues faced by the metal additive manufacturing community. It eliminates the use of metal powder for workplace and workers safety. It is able to produce end-use parts with industrial grade mechanical and microstructural properties. It utilizes low cost metal-loaded polymer pellets as feedstock. However ...


Development Of An Activity-Based Windowing Approach To Evaluate Real-World Nox Emissions From Modern Medium And Heavy-Duty Diesel Trucks, Rasik Pondicherry Jan 2020

Development Of An Activity-Based Windowing Approach To Evaluate Real-World Nox Emissions From Modern Medium And Heavy-Duty Diesel Trucks, Rasik Pondicherry

Graduate Theses, Dissertations, and Problem Reports

The introduction of in-use emissions regulations by the United States Environmental Protection Agency (U.S.EPA) requires medium-duty (MD) and heavy-duty (HD) engine manufacturers to demonstrate emissions compliance during in-fleet operation. In the United States (U.S.), the Not-to-Exceed (NTE) method is used to evaluate real-world emissions compliance from on-highway MD and HD trucks. Regulatory agencies, engine manufacturers and research entities have identified that the NTE method incorporates numerous exclusions and evaluates emissions compliance only under selective operating conditions that are favorable for the selective catalytic reduction (SCR) system to reduce oxides of nitrogen (NOx) emissions efficiently. Such operation is ...


Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel Jan 2020

Development Of Universal Solver For High Enthalpy Flows Through Ablative Materials, Umran Duzel

Theses and Dissertations--Mechanical Engineering

Atmospheric entry occurs at very high speeds which produces high temperature around the vehicle. Entry vehicles are thus equipped with Thermal Protection Systems which are usually made of ablative materials. This dissertation presents a new solver that models the atmospheric entry environment and the thermal protection systems. In this approach, both the external flow and the porous heat shield are solved using the same computational domain. The new solver uses the Volume Averaged Navier-Stokes Equations adapted for hypersonic non-equilibrium flow, and is thus valid for both domains. The code is verified using analytical problems, set of benchmarks and also a ...


Quaternary Hydrides Pd1-Y-Zagycuzhx Embedded Atom Method Potentials For Hydrogen Energy Applications, Chaonan Zhang Jan 2020

Quaternary Hydrides Pd1-Y-Zagycuzhx Embedded Atom Method Potentials For Hydrogen Energy Applications, Chaonan Zhang

Theses, Dissertations and Capstones

The Pd-H system has attracted extensive attention. Pd can absorb considerable H at room temperature, this ability is reversible, so it is suitable for multiple energy applications. Pd-Ag alloys possess higher H permeability, solubility and narrower miscibility gap with better mechanical properties than pure Pd, but sulfur poisoning remains an issue. Pd-Cu alloys have excellent resistance to sulfur and carbon monoxide poisoning and hydrogen embrittlement, good mechanical properties, and broader temperature working environments over pure Pd, but relatively lower hydrogen permeability and solubility than pure Pd and Pd-Ag alloys. This suggests that alloying Pd with Ag and Cu to create ...


Rotational And Shower Head Cooling Hole Effects On Leading-Edge Jet Impingement Heat Transfer, Weston Olson Jan 2020

Rotational And Shower Head Cooling Hole Effects On Leading-Edge Jet Impingement Heat Transfer, Weston Olson

Electronic Theses and Dissertations, 2020-

Jet Impingement and shower head cooling are critical cooling techniques used to maintain turbine blades at operational temperatures. Jet impingement is extremely effective at removing large amounts of heat flux from the target surface, the inner blade wall, through stagnation point heat transfer. Shower head cooling produces a cooling film around the exterior of the blade, in return reducing external heat flux. The current work consisted of investigating the jet impingement effectiveness with rotational effects for two different cooling schemes. The analysis was conducted numerically using STAR CCM+ with two different turbulence models, the three equation Lag Elliptic Blending K ...


Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel Jan 2020

Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel

Graduate Theses, Dissertations, and Problem Reports

Increasing demands in the next-generation portable power-generation devices such as unmanned aerial vehicles (UAV), microsatellite thrusters, micro-chemical reactors and sensors calls for fuels with high specific energy and low emissions to meet the current demand of green energy. Fuel-lean synthesis gas (syngas) meets both these requirements exhibiting a promising route to a clean and green environment. Thus, it is of critical importance to characterize syngas combustion and understand its properties in the micro-combustion industry. In addition to complicated flame dynamics in microscale systems, varying the syngas-fuel mixture composition as well as the boundary conditions and geometry of a combustor significantly ...