Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski Apr 2023

Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski

Doctoral Dissertations

Fossil fuel consumption increases 2% a year due to transportation fuels and specialty chemicals for plastics and synthetic fibers such as p-xylene, a monomer of polyethylene terephthalate. p-Xylene demand was over 50 million tons in 2021 and will increase by 5% a year through 2026. Therefore, sustainable p-xylene production is desired. p-Xylene is produced renewably through Diels-Alder cycloaddition of biomassderived 2,5-dimethylfuran (DMF) with ethylene from bio-ethanol and dehydration over an acid catalyst. Industrial aluminosilicate zeolite catalysts achieve a selectivity of 75%, with loss to side products and coking. A new class of catalysts, phosphoric acid-containing aluminum-free zeolites, P-zeosils, like dealuminated …


Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey Jul 2020

Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey

Doctoral Dissertations

The use of biomass-derived ligno-cellulose as a possible alternative source of fuels and chemicals to fossil-based hydrocarbons, however, biomass offers many challenges based on processing and its high oxygen content. One promising upgrading route is deoxydehydration, a reaction which combines a deoxygenation by a sacrificial reductant and dehydration in a single step to selectively convert vicinal diols into an olefin. This reaction is highly selective when using homogeneous oxo-rhenium catalysts, which can easily undergo the necessary changes in coordination and oxidation state, however the high cost of rhenium and difficulty of homogeneous catalyst recovery make these catalysts untenable for large …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …


Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper Oct 2018

Computational Modeling Of The Structure And Catalytic Behavior Of Graphene-Supported Pt And Ptru Nanoparticles, Raymond Gasper

Doctoral Dissertations

Computer modeling has the potential to revolutionize the search for new catalysts for specific applications primarily via high-throughput methodologies that allow researchers to scan through thousands or millions of potential catalysts in search of an optimal candidate. To date, the bulk of the literature on computational studies of heterogeneous catalysis has focused on idealized systems with near-perfect crystalline surfaces that are representative of macroscopic catalysts. Advancing the frontier to nanoscale catalysis, in particular, heterogeneous catalysis on nanoclusters, requires consideration of low-symmetry nanoparticles with realistic structures including the attendant complexity arising from under-coordination of catalyst atoms and dynamic fluxionality of clusters. …


Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho Jul 2017

Nanoporous Solid Acid Materials For Biomass Conversion Into Value-Added Chemicals: Synthesis, Catalysis, And Chemistry, Hong Je Cho

Doctoral Dissertations

Growing environmental concerns associated with diminishing reserves of fossil fuels has led to accelerated research efforts towards the discovery of new catalytic processes for converting renewable lignocellulosic biomass into value-added chemicals. For this conversion, nanoporous solid acid materials have been widely used because of their excellent hydrothermal stability and molecular sieving capability. In the thesis, hierarchical Lewis acid zeolites with ordered mesoporosity and MFI topology (three dimensionally ordered mesoporous imprinted (3DOm-i) Sn-MFI) were successfully synthesized within the confined space of three dimensionally ordered mesoporous (3DOm) carbon by a seeded growth method. The obtained 3DOm-i Sn-MFI showed at least 3 times …


Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams Nov 2014

Production Of Sustainable Aromatics From Biorenewable Furans, Christopher Luke Williams

Doctoral Dissertations

Increasing demand for renewable and domestic energy and materials has led to an accelerated research effort in developing biomass-derived fuels and chemicals. The North American shale gas revolution can provide a domestic source for the manufacture of four of the five major products of the world chemical industry: methanol, ethylene, ammonia, and propylene. However this emerging domestic resource lacks a conversion pathway to the fifth major chemical building block; the larger C6 aromatics benzene, toluene, and xylene (BTX). One sustainable feedstock for renewable C6 aromatic chemicals is sugars produced by the saccharification of biopolymers (e.g., cellulose, hemicellulose). The catalytic conversion …


Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou Nov 2014

Structural, Electronic And Catalytic Properties Of Graphene-Supported Platinum Nanoclusters, Ioanna Fampiou

Doctoral Dissertations

Carbon materials are predominantly used as catalytic supports due to their high surface area, excellent electrical conductivity, resistance to corrosion and structural stability. Graphene, a 2D monolayer of graphite, with its excellent thermal, electronic and mechanical features, has been considered a promising support material for next generation metal-graphene nanocatalysts. The main focus of this dissertation is to investigate the properties of such metal-graphene nanocomposites using computational methods, and to develop a comprehensive understanding of the experimentally observed enhanced catalytic activity of graphene-supported Platinum (Pt) clusters. In particular, we seek to understand the role of graphene supports on the ground-state morphology …


Catalytic Fast Pyrolysis Of Biomass For The Production Of Fuels And Chemicals, Torren Ryan Carlson Sep 2010

Catalytic Fast Pyrolysis Of Biomass For The Production Of Fuels And Chemicals, Torren Ryan Carlson

Open Access Dissertations

Due to its low cost and large availability lignocellulosic biomass is being studied worldwide as a feedstock for renewable liquid biofuels. Currently there are several routes being studied to convert solid biomass to a liquid fuel, which involve multiple steps at long residence times thus greatly increasing the cost of biomass processing. Catalytic fast pyrolysis (CFP) is a new promising technology to convert directly solid biomass to gasoline-range aromatics that fit into the current infrastructure. CFP involves the rapid heating of biomass (~500˚C sec-1) in an inert atmosphere to intermediate temperatures (400 to 600 ˚C) in the presence of zeolite …