Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Catalysis

Discipline
Institution
Publication Year
Publication

Articles 1 - 30 of 105

Full-Text Articles in Engineering

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio Dec 2023

Computationally-Driven Insights Into The Ligand Environments Of Materials For Catalysis And Separations, Stephen Vicchio

All Dissertations

Designing new catalytic and sorption materials is necessary to limit global temperature rise below 1.5 ◦C by 2050, while also meeting global energy demands. Climate change and energy production are not mutually exclusive; global population growth has direct impacts on global energy demands and climate. In both catalysis and adsorption applications, new technologies are needed to address these challenges. Catalysis can provide alternate, low-energy routes for converting low-value gases into higher-value chemical commodities, thus altering our current energy production. Likewise, new sorption materials can capture previously emitted CO2 from decades of energy production from fossil fuels, thus helping to …


Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson Nov 2023

Syntheses, Photophysics, & Application Of Porphyrinic Metal-Organic Frameworks, Zachary L. Magnuson

USF Tampa Graduate Theses and Dissertations

Porphyrins are a group of heterocyclic macrocycles that play crucial roles in various biological processes such as electron transfer, catalysis, and sensing. Hemoglobin, which carries oxygen in the blood of mammals, and chlorophyll, which drives photosynthesis in plants and algae, are both porphyrins. The ability of porphyrins to bind metal ions and their unique electronic and photophysical properties make them an excellent platform for designing functional materials for various applications, often drawing inspiration from their function in nature. Metal-organic frameworks (MOFs) are a class of porous materials that have been extensively studied in recent years due to their high surface …


Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson May 2023

Separation Of Organic Acids Through Direct Catalysis From Sugars, Katelyn Robinson

Chemical Engineering Undergraduate Honors Theses

Society relies on plastic products, whether they are single use or durable. A downside of plastic is that the most common type is a product of oil and oil is not only a limited resource but also a climate-damaging resource. Polylactic acid (PLA) is a bio-based, biodegradable plastic. However, the process of converting biomass to polylactic acid polymer has the largest environmental impact of the PLA production process, so alternative methods of conversion are needed (Moretti et al., 2021). The polylactic acid polymer can be made with lactic acid, which can be converted from glucose.


Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski Apr 2023

Phosphorus-Containing Zeolites For Biofuel Production, Jason Gulbinski

Doctoral Dissertations

Fossil fuel consumption increases 2% a year due to transportation fuels and specialty chemicals for plastics and synthetic fibers such as p-xylene, a monomer of polyethylene terephthalate. p-Xylene demand was over 50 million tons in 2021 and will increase by 5% a year through 2026. Therefore, sustainable p-xylene production is desired. p-Xylene is produced renewably through Diels-Alder cycloaddition of biomassderived 2,5-dimethylfuran (DMF) with ethylene from bio-ethanol and dehydration over an acid catalyst. Industrial aluminosilicate zeolite catalysts achieve a selectivity of 75%, with loss to side products and coking. A new class of catalysts, phosphoric acid-containing aluminum-free zeolites, P-zeosils, like dealuminated …


Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown Jan 2023

Ambient Ammonia Synthesis Via Microwave-Catalytic Materials And Plasma Chemistry, Siobhan Brown

Graduate Theses, Dissertations, and Problem Reports

Ammonia is critical to supporting human life on earth because of its use as fertilizer. The Haber-Bosch process to produce ammonia has been practiced for over 100 years. This process operates at high pressure and temperature to overcome the thermodynamic and kinetic limitations of the ammonia synthesis reaction thus researchers have tried to overcome it for decades. At present this process represents 1% of global energy usage and 2.5% of global CO2 emissions. The proposed chemical looping ammonia synthesis approach seeks to reduce the environmental impact of this critical process and to elucidate microwave-catalytic principles.

This research aims to …


Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir Dec 2022

Elucidation Of Active Site And Mechanism Of Metal Catalysts Supported In Nu-1000, Hafeera Shabbir

All Dissertations

Advances in extraction of shale oil and gas has increased the production of geographically stranded natural gas (primarily consisting of methane (C1) and ethane (C2)) that is burned on site. A potential utilization strategy for shale gas is to convert it into fuel range hydrocarbons by catalytic dehydrogenation followed by oligomerization by direct efficient catalysts. This work focuses on understanding metal cation catalysts supported on metal-organic framework (MOF) NU-1000 that will actively and selectively do this transformation under mild reaction conditions, while remaining stable to deactivation (via metal agglomeration or sintering). I built computational models validated by experimental methods to …


Supported Metal Bifunctional And Bimetallic Catalysts With Precisely Controlled Structures And Properties, Anhua Dong Oct 2022

Supported Metal Bifunctional And Bimetallic Catalysts With Precisely Controlled Structures And Properties, Anhua Dong

Theses and Dissertations

In heterogenous catalysis, metallic nanomaterials play vital roles in numerous chemical processes. However, monofunctional catalysts are greatly impeded in their applications especially in the systems including tandem and/or sequential reaction steps. Besides, the catalytic performance can also be greatly influenced by the particle size, morphology, and geometry of the surface metal atoms.

The goal of this work is to synthesize bifunctional or bimetallic nanoparticles with high metal dispersion and homogenous alloys by rational synthetic strategies to facilitate the catalyst function. Strong electrostatic adsorption (SEA) is an effective and facile methodology to produce well dispersed and uniform nanoparticles. Metal-acid bifunctional catalysts …


Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan Aug 2022

Modeling Solvent Extraction Of Lignin From Hardwoods, Su Pan

McKelvey School of Engineering Theses & Dissertations

This study interprets the observed behavior of solvent extraction of lignin from hardwoods by adapting the framework of the FLASHCHAIN theory (Niksa and Kerstein, 1991; Niksa, 2017). A constitution submodel specifies distributions of molecular weight and reactive sites for native lignin. The model simulates delignification as depolymerization of lignin macromolecules into fragments small enough to be soluble. This process competes with intrachain condensation that consumes labile bridges without forming new fragments, and with recombination that forms larger chains and inhibits further depolymerization. After the soluble fragments are transported from the particle into the bulk solvent, all chemistry continues as long …


Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb Aug 2022

Intersections Of Environmentalism, Chemistry, And Racism: An Experimental Study Of Halobenzene Hydrogenolysis And Critical Communication Studies Of Equitable Learning Practices Rooted In Black Feminism, Lauren O. Babb

Electronic Theses and Dissertations

Increasing concentrations of fluorinated aromatic compounds in surface water, groundwater, and soil pose threats to the environment. Fundamental studies that elucidate mechanisms of dehalogenation for C-X compounds (where X represents a halide) are required to develop effective remediation strategies. For halogenated benzenes, previously published research has suggested that the strength of the C-X bond is not rate-determining in the overall rate of dehalogenation. Instead, the rate-determining step has been hypothesized to be adsorption of the C-X compound onto the surface of a catalyst. Building on this hypothesis, in this work, we examine the reaction kinetics of fluorobenzene conversion to benzene, …


Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain May 2022

Engineering Lewis Acidic Materials For Biomass Conversion And Battery Applications., Md Anwar Hossain

Electronic Theses and Dissertations

My long-term goal is to develop catalytic systems to produce renewable energy for a sustainable society. The overall research objective of my dissertation is to advance understanding of Lewis acidic materials for (1) conversion of renewable lignin into phenolics and (2) enhanced cycling stability of lithium metal batteries to safely store renewable electricity from wind and solar, thereby laying the groundwork for our transition to a sustainable society. Petroleum is a conventional feedstock for current transportation fuels (gasoline, diesel, and jet fuels). However, petroleum is a finite resource and produces greenhouse gases (CO2 and CH4) upon processing, …


Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta May 2022

Materials And Interfaces For Electrocatalytic Hydrogen Production And Utilization., Alexander Jiya Gupta

Electronic Theses and Dissertations

Mass industrialization over the last few centuries has created a global economy which is dependent upon fossil fuels to satisfy an exponentially increasing demand for energy. Aside from the possible depletion of this finite resource, the combustion of fossil fuels releases greenhouse gases into the atmosphere which cause the global temperature to rise – a phenomenon which has already begun to create geologic and geopolitical instability and shows no signs of abatement. One proposed method to rid humanity of its dependence on fossil fuels is to use green hydrogen as an energy carrier. In this scheme, excess electricity from a …


Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath Mar 2022

Computational Study Of The Reactions Of Heteroatomic Compounds On Ceo2, Suman Bhasker Ranganath

LSU Doctoral Dissertations

The mechanisms of ambient-temperature reactions of heteroatomic compounds catalyzed by ceria (CeO2), an archetypical reducible oxide, for enzyme mimetics, environmental protection, and chemical synthesis are investigated in this dissertation using theoretical methods. CeO2 is modeled with thermodynamically stable low-index surfaces exposed by commonly studied ceria thin films and nano particles. To understand phosphatase-like dephosphorylation activity, stable adsorption states and surface reactions of model phosphates are examined. Binding of the central P-atom to surface lattice oxygen (Olatt) supplemented by phosphoryl O-Ce interaction is the only stable adsorption state for the un-dissociated molecule. Deprotonation of phosphate monoesters, …


Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel Jan 2022

Microwave-Assisted Carbon Nanotube Growth From Methane On Surface Catalyst Exsolving Perovskite Oxide, Angela M. Deibel

Graduate Theses, Dissertations, and Problem Reports

The novel method of using a perovskite exsolution catalyst, strontium titanium nickel oxide (STNO), proved capable of simultaneously producing carbon nanotubes (CNTs) and COx-free hydrogen during methane decomposition under microwave irradiation. An optimization of common perovskite materials was conducted for microwave-responsiveness with the results reported in this study. Out of the materials screened, strontium titanium nickel oxide (STNO) was the best candidate to achieve an acceptable methane conversion rate as well as a decent responsiveness to microwave. STNO was further optimized through Ni content, reduction dwell time, and reduction temperature to produce the best methane conversion and CNT …


Recent Advances In Catalytic Ethylene Epoxidation: Synthesis, Characterization, And Evaluation, Benjamin Thomas Egelske Oct 2021

Recent Advances In Catalytic Ethylene Epoxidation: Synthesis, Characterization, And Evaluation, Benjamin Thomas Egelske

Theses and Dissertations

First synthesized in 1859 by French chemist Charles-Adolphe Wurtz, ethylene oxide (EO) is produced from the direct epoxidation of ethylene and molecular oxygen over a low surface area α-Al₂O₃ supported silver (Ag) catalyst [1-6]. With a production capacity over 35 Mt/year, EO is the largest chemical by volume synthesized from a heterogeneously catalyzed process and is used in the production of ethylene glycol, ethoxylates, and ethanolamines [6, 7]. State-of-the-art catalyst formulations contain high loadings of Ag, typically 12-30wt%, required to recover activity in the presence of promoter elements which increase EO selectivity from ~75% for unsupported Ag to 80% for …


Insights Into Rational Catalysts Synthesis, Abolfazl Shakouri Oct 2021

Insights Into Rational Catalysts Synthesis, Abolfazl Shakouri

Theses and Dissertations

Atomically distributed metal centers with maximized atom utilization efficiency called single-atom catalysts (SACs) have attracted significant attention in catalysis. SACs with the advantages of both homogeneous and heterogeneous catalysts have been rising as a new frontier in the field of catalysis. New catalytic technologies are ever-growing, considering 90% of all chemical processes employ catalysts, securing modern society’s sustainable future. A classical field in catalysis has been dedicated to catalysis by supported metals. Recently, a vast effort has been devoted to smaller catalyst particles where size is restricted to a single atom on a surface. Single atoms supported or embedded on …


Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla Aug 2021

Mixed Metal Oxide Nanowires Via Solid State Alloying., Veerendra Atla

Electronic Theses and Dissertations

Mixed metal oxide materials with composition control find applications in energy conversion and storage processes such as heterogenous catalysis, photoelectrochemical catalysis, electrocatalysis, thermal catalysis, and lithium-ion batteries. Mixed metal oxides and/or complex oxides with composition control and in one-dimensional form as nanowires could be interesting to various catalysis applications due to control on single crystal surfaces, active sites, acidity versus basicity site density, and oxygen vacancies. The major challenge is to synthesize mixed metal oxide nanowires beyond binary oxides with composition control. In this dissertation, solid state alloying of binary oxide nanowires with solid and liquid precursors is studied to …


Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts Aug 2021

Modified Electrode Surfaces With Hydrogen Evolution Reaction Catalysts Derived From Electropolymerized Complexes With Redox Active Ligands., Amanda Mae Arts

Electronic Theses and Dissertations

The demand for energy is growing exponentially, and to keep up with these demands new technologies for renewable energy have received increased attention. Hydrogen is one of the most promising energy sources for the future and plays a vital role in water electrolysis and fuel cells, as the hydrogen evolution reaction (HER) is the main step in the water splitting process. To increase the reaction rate and improve efficiency for the water electrolysis, catalysts are used to minimize the overpotential.

Most of the current electrocatalysts for HER are heterogeneous in nature and are dominated by platinum and other precious metals …


Solvent Effect Modeling In Heterogenous Catalysis, Mehdi Zare Jul 2021

Solvent Effect Modeling In Heterogenous Catalysis, Mehdi Zare

Theses and Dissertations

In recent years, the biorefining industry and biofuels have emerged as a major American energy sector. Biofuels are fuels produced from plant and animal material, also referred to as biomass. This includes wood products, manure, and corn, among other materials. Compared to fossil fuels, biofuels are significantly more environmentally friendly and thus pose less of a threat to environmental health. In 2019, the United States consumed around 14.54 billion gallons of ethanol and around 1.81 billion gallons of biodiesel. By 2030, the United States is expected to consume around 95 Mtoe of biofuels. In order to meet current demand and …


Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin May 2021

Computational Design Of Two-Dimensional Transition Metal Dichalcogenide Alloys And Their Applications, John Douglas Cavin

Arts & Sciences Electronic Theses and Dissertations

The discovery of bronze as an alloy of copper and tin is arguably the earliest form of material design, dating back thousands of years. In contrast, two-dimensional materials are new to the 21st century. The research presented in this dissertation is at the intersection of alloying and two-dimensional materials. I specifically study a class of two-dimensional materials known as transition metal dichalcogenides (TMDCs). Because of the large number of transition metals, there are many combinations of TMDCs that can be alloyed, making experimental exploration of the phase space of possible alloys unwieldly. Instead, I have applied first-principles methods to study …


Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman May 2021

Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Zero-valent iron nanoparticles (nZVI) have been studied as an option for soil remediation and water treatment for many years. The capability of nZVI to produce oxidation/reduction processes, depending on the reaction conditions, has attracted great interest with their major drawback being reactivity loss through agglomeration. The loss in nZVI surface area has been reported to be prevented through immobilization onto a porous media (e.g., SBA-15, MCM-41, or zeolites). In this work, a mesoporous silica structure (SBA-15) is used as an nZVI supporting material to enhance its reactivity and promote peroxymonosulfate (PMS) catalytic decomposition for the degradation of antibiotics in aqueous …


Conversion Of Lignocellulose Biomass From Date Palm Waste To High Value Chemicals, Emmanuel Galiwango Apr 2021

Conversion Of Lignocellulose Biomass From Date Palm Waste To High Value Chemicals, Emmanuel Galiwango

Dissertations

Lignocellulose biomass has gained growing popularity because of its low cost of production compared to food crops, it solves problems of food and energy security, can grow in various climates and land, and it is CO2 neutral. Date palm trees produce large amounts of fibrous wastes that are good sources of lignocellulose. There are over 40 million date palm trees in UAE and most of their lignocellulosic wastes (i.e., leaves, surface fibers, bunches, etc.) are currently used for low value applications such as compost or electric generation. However, the lignocellulosic components of this waste stream have the potential to …


Cyclic Sequential Adsorption Desorption/Thermal-Catalytic Oxidation Of Volatile Organic Compounds: Material Development, Process Advancement/Improvement, And Numerical Modeling, Simulation And Optimization, Busuyi Ojo Adebayo Jan 2021

Cyclic Sequential Adsorption Desorption/Thermal-Catalytic Oxidation Of Volatile Organic Compounds: Material Development, Process Advancement/Improvement, And Numerical Modeling, Simulation And Optimization, Busuyi Ojo Adebayo

Doctoral Dissertations

"Volatile organic compounds (VOCs) are a group of useful organic chemicals but when emitted have contributed to air pollution. They affect human health, cause environmental degradation and contaminate our waters and soils, so they need to be controlled. When they exist in dilute concentrations, abatement becomes challenging, thus requiring advanced abatement methods, e.g., sequential adsorption desorption/thermal-catalytic oxidation process. The overall goal of this research was to abate dilute streams of VOCs via the process. The specific objectives were to 1) develop novel adsorbent/catalyst dual-function materials (DFMs) for the process, 2) improve the operability of a one-bed-one-column reactor configuration for the …


Simultaneous Activation Of Stable Molecules- Methane And Nitrogen- Using Microwave Reactor With And Without Plasma- To Produce Ethylene And Ammonia, Sarojini Tiwari Jan 2021

Simultaneous Activation Of Stable Molecules- Methane And Nitrogen- Using Microwave Reactor With And Without Plasma- To Produce Ethylene And Ammonia, Sarojini Tiwari

Graduate Theses, Dissertations, and Problem Reports

The discovery of stranded natural gas around the world has made shale gas cheaper and widely accessible. This has driven the relevant research towards the direct utilization of Methane (CH4), a major component of natural gas. CH4 is a highly stable molecule, hence its activation and consequent formation of value-added chemicals in a direct and efficient manner is a relevant problem of the 21st century. All the commercial processes convert natural gas to chemicals indirectly, via the formation of syngas followed by several reactions. The conventional systems are energy intensive and one of the major contributors to green-house gas emissions. …


Microwave-Assisted Natural Gas Conversion To Value-Added Chemicals, Xinwei Bai Jan 2021

Microwave-Assisted Natural Gas Conversion To Value-Added Chemicals, Xinwei Bai

Graduate Theses, Dissertations, and Problem Reports

Stranded gas is a raw gas mixture of volatile hydrocarbons where the main composition is methane. The producers flare the stranded gas at the site because the cost of collecting and transporting the gas is higher than the value of the gas itself. To reduce the waste of this natural resource, it is worthwhile to utilize the on-site stranded natural gas as feedstock to produce value-added chemicals without emitting greenhouse gas. Direct natural gas conversion process is more desirable because of lower capital investment. Methane and ethane, the two major components of natural gas, are very stable molecules that usually …


Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana Dec 2020

Understanding Biomass Upgrading Through Hydrogenolysis Reactions: Kinetics And Mechanism, Jalal Tavana

Electronic Theses and Dissertations

This dissertation involves several hydrogenolysis reactions but is mainly focused on hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of 2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of research for some time. Here, we used a Pd/C catalyst to study this reaction though rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2/D2 kinetic isotope effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The kinetics data are in agreement with similar systems reported before and follow a first-order dependence on chlorobenzene, half order for hydrogen and …


The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker Dec 2020

The Effect Of Moox Reducibility On Its Activity For Anisole Hydrodeoxygenation, Chantal Walker

Electronic Thesis and Dissertation Repository

Catalytic hydrodeoxygenation (HDO) is a process for upgrading crude bio-oil as it has a high oxygen content which causes several undesirable properties. Current methods for HDO use sulfided NiMo and CoMo or supported noble metal catalysts which hydrogenate aromatic rings, leading to less valuable products and increasing the hydrogen consumption. Using 10 wt. % MoO3 supported on ZrO2, TiO2, γ-Al2O3, SiO2 and CeO2, we investigated the atmospheric HDO of anisole, a model compound, at 350 °C. All catalysts achieved C – O bond cleavage, preserving the aromatic ring. In situ UV-Vis spectroscopy showed a peak corresponding to intervalence charge transfer …


Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning Dec 2020

Understanding The Role Of Atom Trapping In The Evolution Of Hydrocarbon Transformation Catalyst Morphology, Griffin Canning

Chemistry and Chemical Biology ETDs

Converting alkanes to other, more chemically and economically valuable molecules requires catalysts that can survive elevated temperatures and highly reducing environments. These environments can cause many metal-nanoparticle based catalysts to sinter rapidly, causing a loss of activity. They must also tolerate the coke formation, as well, since coke can restrict access to active sites by gas phase molecules, thus lowering catalytic activity. While there are routes to improve both the sinter and coke resistance of catalysts, an alternative strategy is to develop a protocol for regenerating the activity of the catalyst in question when coke formation or sintering becomes problematic. …


Rational Design Of Non-Noble Metal Intermetallic Compounds With Tunable Surface And Catalytic Chemistry Via Combined Computational And Experimental Method, Yuanjun Song Dec 2020

Rational Design Of Non-Noble Metal Intermetallic Compounds With Tunable Surface And Catalytic Chemistry Via Combined Computational And Experimental Method, Yuanjun Song

Doctoral Dissertations

This study focuses upon understanding and rationally tuning the surface reactivity towards C, H, and O of non-noble metal intermetallic compounds (IMCs) catalysts in olefin production and hydrocarbons reforming reactions. In these reactions, different degrees of surface reactivity towards C, H, and O are required to achieve high activity and selectivity as well as stability. A combined computational and experimental method was performed to build this understanding how to rationally design catalysts. Investigations based on quantum chemical calculations indicate surface reactivity towards C, H, and O is a function of element size of constituent elements as well as bulk and …


Advanced Materials For Air Pollutants Removal In A Combustion System, Sungyoon Jung Aug 2020

Advanced Materials For Air Pollutants Removal In A Combustion System, Sungyoon Jung

McKelvey School of Engineering Theses & Dissertations

Air pollutants directly or indirectly impact human health and the environment. Large quantities of CO2, volatile organic compounds (VOCs), and particulate matter are emitted from combustion systems, and cause climate change, smog formation, and pose serious health risks. The increasing demand for the remediation of air pollutants at the source has drawn much attention to the use of advanced materials due to their high reactivities and special properties. In order to achieve the successful application of advanced materials for the remediation of problematic emissions, three aspects, (1) synthesis method, (2) characterization of materials’ structural properties, and (3) evaluation of materials’ …


Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey Jul 2020

Development And Characterization Of Robust And Cost-Effective Catalysts For Selective Biomass Upgrading To Fuels And Chemicals By Deoxydehydration, Bryan E. Sharkey

Doctoral Dissertations

The use of biomass-derived ligno-cellulose as a possible alternative source of fuels and chemicals to fossil-based hydrocarbons, however, biomass offers many challenges based on processing and its high oxygen content. One promising upgrading route is deoxydehydration, a reaction which combines a deoxygenation by a sacrificial reductant and dehydration in a single step to selectively convert vicinal diols into an olefin. This reaction is highly selective when using homogeneous oxo-rhenium catalysts, which can easily undergo the necessary changes in coordination and oxidation state, however the high cost of rhenium and difficulty of homogeneous catalyst recovery make these catalysts untenable for large …