Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick Dec 2016

Improvements To Micro-Contact Performance And Reliability, Tod V. Laurvick

Theses and Dissertations

Microelectromechanical Systems (MEMS) based devices, and specifically microswitches, continue to offer many advantages over competing technologies. To realize the benefits of micro-switches, improvements must be made to address performance and reliability shortfalls which have long been an issue with this application. To improve the performance of these devices, the micro-contacts used in this technology must be understood to allow for design improvements, and offer a means for testing to validate this technology and determine when such improvements are ready for operational environments. To build devices which are more robust and capable of continued operation after billions of cycles requires that …


Characterization For The Development Of The Hybrid Multi-Junction Silicon Germanium Solar Cell, Jimmy J. Lohrman Mar 2016

Characterization For The Development Of The Hybrid Multi-Junction Silicon Germanium Solar Cell, Jimmy J. Lohrman

Theses and Dissertations

Based on the previous development of the hybrid multi-junction silicon (HMJ-Si) solar cell, this work characterized the preceding design for the development of the hybrid multi-junction silicon germanium (HMJ-SiGe) solar cell. Seven focus areas were investigated: diffraction pattern generation, photon propagation, silicon diffusion processing, ohmic contacts, the distributed Bragg reflector (DBR), the Fresnel zone plate (FZP), and the germanium/germanium telluride (Ge/GeTe) pn-junction Diffraction patterns were theoretically examined, and contact grating design characterization for reflectance and transmittance properties was modeled using rigorous coupled wave analysis. An improved silicon diffusion process follower was developed, and theoretical study and experimental assessment were accomplished …


Optically Stimulated Luminescence From Ag-Doped Lithium Tetraborate (Li2b4o7), Ember S. Maniego Mar 2016

Optically Stimulated Luminescence From Ag-Doped Lithium Tetraborate (Li2b4o7), Ember S. Maniego

Theses and Dissertations

Silver-doped lithium tetraborate (Li2B4O7) crystals emit optically stimulated luminescence (OSL) in response to stimulating light around 400 nm. Photoluminescence, optical absorption, and electron paramagnetic resonance (EPR) were used to identify the defects in the crystal that cause this OSL. Lithium tetraborate crystals have Ag+ ions at Li+ sites and at interstitial sites. Upon ionization at room temperature via x rays, electron-hole pairs are generated. The electrons are trapped at Ag+ occupying interstitial sites, while the holes are trapped at Ag+ at lithium sites. The trapped electron centers become Ag0 …


Neutron Radiation Effects On Ge And Gesn Semiconductors, Christopher T. O'Daniel Mar 2016

Neutron Radiation Effects On Ge And Gesn Semiconductors, Christopher T. O'Daniel

Theses and Dissertations

Two different semiconductor materials received neutron radiation for assessment of radiation damage. The two materials are undoped bulk Ge and epitaxial Ge0.991Sn0.009, which is doped heavily with phosphorous. At room temperature, the Ge sample has direct and indirect bandgaps at 0.78 eV and 0.66 eV, respectively. The Ge0.991Sn0.009 sample has direct and indirect bandgaps at 0.72 eV and 0.63 eV, respectively. Two samples of each material were exposed to research reactor neutrons, delivering a 1 MeV equivalent neutron fluence of 2.52 × 1015 n/cm2. In order to assess the radiation …