Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 78

Full-Text Articles in Engineering

Evaluation Of Far-Side Occupant Safety Based On Numerical Modeling, Syed Akhtar Imam Jan 2020

Evaluation Of Far-Side Occupant Safety Based On Numerical Modeling, Syed Akhtar Imam

Wayne State University Dissertations

The objective of this study was to augment the knowledge of the far-side occupant injury biomechanics in side impact vehicle crashes. Most research studies conducted to investigate the far-side occupant injuries are through the field crash data for a better understanding of human impact responses, injury mechanisms, and injury tolerance levels. The data obtained from field data is also used in the development of injury mitigation technologies, such as safety belts, airbags, etc. A field data represents the injury outcome of an automotive crash, but it doesn’t leave behind enough information for in-depth knowledge. The use of cadaver is the …


Study Of Grain Growth In Single-Phase Polycrystals, Pawan Vedanti Jan 2020

Study Of Grain Growth In Single-Phase Polycrystals, Pawan Vedanti

Wayne State University Dissertations

Materials with random microstructure are characterized by additional thermodynamic parameters, entropy and temperature of microstructure. It has been argued that there is one more law of thermodynamics: entropy of microstructure decays in isolated systems. This assertion has been checked experimentally for the process of grain growth which showed that entropy of grain structure decays indeed as expected. The equation of state for microstructure entropy has also been studied. In general, entropy of grain microstructure is expected to be a function of grain structure energy and the average grain size. Our experiments suggest that in fact, the equation of state degenerates …


Spectral Methods For Hamiltonian Systems And Their Applications, Lewei Zhao Jan 2019

Spectral Methods For Hamiltonian Systems And Their Applications, Lewei Zhao

Wayne State University Dissertations

Hamiltonian systems typically arise as models of conservative physical systems and have many applications. Our main emphasis is using spectral methods to preserve both symplectic structure and energy up to machine error in long time. An engery error estimation is given for a type of Hamiltonian systems with polynomial nonlinear part, which is numerical verified by solving a Henon-Heiles systems. Three interesting applications are presented : the first one is the N-body problems. The second one is approximation for Weyl's Law and the third one is simulating quantum cooling in an optomechanical system to study the dissipative dynamics. Moreover, nonsmooth …


Developing A Real-World Vehicle Trip Dataset Through Public Travel Surveys And Applying It To Battery Electric Vehicle Performance Study, Nizar Ali Khemri Jan 2019

Developing A Real-World Vehicle Trip Dataset Through Public Travel Surveys And Applying It To Battery Electric Vehicle Performance Study, Nizar Ali Khemri

Wayne State University Dissertations

Real-world second-by-second vehicle driving cycle data is very important for research and development of the traditional fuel-powered vehicles, the emerging electric vehicles, and the hybrid vehicles. A project solely dedicated to generating such information would be extremely costly and time-consuming. Alternatively, we introduce a method to develop such a database by utilizing two publicly available passenger vehicle travel surveys; the 2004-2006 Puget Sound Regional Commission (PSRC) Travel Survey and the 2011 Atlanta Regional Commission (ARC) Travel Survey. The two surveys complement each other – the former is in low time resolution but covers vehicle driving and non-driving operation for over …


Direct Laser Metal Deposition Of Nickel Based Superalloys, Abhishek Ramakrishnan-Sudha Jan 2019

Direct Laser Metal Deposition Of Nickel Based Superalloys, Abhishek Ramakrishnan-Sudha

Wayne State University Dissertations

Nickel-based superalloys are substantially used in the manufacturing of boilers for ultra-supercritical power plants and gas turbine hot-section as this grade of alloys provide higher yield strength with the rise in operating temperature and pressure owing to the presence of γʹ second phase precipitates. Conventionally, casting techniques such as centrifugal casting, investment casting, vacuum molding and several other casting based methods are used to fabricate the hot-section components. Nevertheless, a need for designing advanced materials with complex designs such as geometry, microstructure control, compositional changes, microstructure and property varying with the location as in functionally graded materials is not viable …


Study Of Probabilistic Characteristics Of Local Field Fluctuations In Isotropic Two Phase Composites: Conductivity Type Problems, David Ostberg Jan 2018

Study Of Probabilistic Characteristics Of Local Field Fluctuations In Isotropic Two Phase Composites: Conductivity Type Problems, David Ostberg

Wayne State University Dissertations

Probability distributions of electric …field and electric potential in two-phase particulate composite materials with spherical inclusions are found in the limit of small particle concentration. Additionally a method for the approximation of local fields within random statistically isotropic composites with a …finite number of …field ‡fluctuations which retain potentiality is presented and an approximate solution with the

variational principal for homogenization in statistical terms for three ‡fluctuations within one phase and a homogeneous second phase is found.


Ethanol Autoignition Modeling And Validation At Wide Ranges Of Mixture Temperatures, Pressures, And Equivalence Ratios, Antowan Zyada Jan 2018

Ethanol Autoignition Modeling And Validation At Wide Ranges Of Mixture Temperatures, Pressures, And Equivalence Ratios, Antowan Zyada

Wayne State University Dissertations

A new ethanol detailed kinetic model with 107 species and 1795 reactions was developed by using the reaction mechanism generator (RMG) and a thorough reaction path analysis. The mechanism model was extensively evaluated against measured ignition delay times, laminar flame speeds, and time-resolved species concentrations. The ignition delay experiments were conducted at pressures of 15, 20, and 30 bar, a temperature range of 850 to 1000 K, and equivalence ratios of 0.5, 1.0 and 2.0 using an optically accessible rapid compression machine (RCM). The effect of oxygen concentration on the ignition delay at a fixed equivalence ratio was also measured …


Surfactants, Thermal And Surface Energy Effects On Emulsions’ Transport Properties: A Study Using Lattice Boltzmann Method, Wessam Falih Hasan Jan 2018

Surfactants, Thermal And Surface Energy Effects On Emulsions’ Transport Properties: A Study Using Lattice Boltzmann Method, Wessam Falih Hasan

Wayne State University Dissertations

This work aims to provide an efficient Gunstensen LBM based CFD model, capable of solving complex problems related to droplets behavior in shear and parabolic flows.

Thermal conditions determine the outcome of the physical and transport properties of emulsions during their various processing phases. A better understanding of the intricate relationship between thermal, surfactants and hydrodynamics can help in the optimization of these processes during the production of emulsions. To investigate the outcome of coupling thermal, surfactants and hydrodynamics on emulsions behavior, a robust quasi-steady thermal-surfactants numerical scheme is presented and used here. To validate the model, the rheological behavior …


Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels, Anthony Composto Jan 2018

Experimental Validation Of An Integrated Guidance And Control System For Marine Surface Vessels, Anthony Composto

Wayne State University Dissertations

Autonomous operation of marine surface vessels is vital for minimizing human errors and providing efficient operations of ships under varying sea states and environmental conditions which is complicated by the highly nonlinear dynamics of marine surface vessels. To deal with modelling imprecision and unpredictable disturbances, the sliding mode methodology has been employed to devise a heading and a surge displacement controller. The implementation of such a controller necessitates the availability of all state variables of the vessel. However, the measured signals in the current study are limited to the global X and Y positioning coordinates of the boat that are …


Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo Jan 2017

Study Of Periodical Flow Heat Transfer In An Internal Combustion Engine, Xi Luo

Wayne State University Dissertations

In-cylinder heat transfer is one of the most critical physical behaviors which has a direct influence on engine out emission and thermal efficiency for IC engine. In-cylinder wall temperature has to be precisely controlled to achieve high efficiency and low emission. However, this cannot be done without knowing gas-to-wall heat flux. This study reports on the development of a technique suitable for engine in-cylinder surface temperature measurement, as the traditional method is “hard to reach.” A laser induced phosphorescence technique was used to study in-cylinder wall temperature effects on engine out unburned hydrocarbons during the engine transitional period (warm up). …


Additive Manufacturing Of Al 4047 And Al 7050 Alloys Using Direct Laser Metal Deposition Process, Amrinder Singh Jan 2017

Additive Manufacturing Of Al 4047 And Al 7050 Alloys Using Direct Laser Metal Deposition Process, Amrinder Singh

Wayne State University Dissertations

Additive manufacturing (AM) of metals is finding numerous applications in automotive and aerospace industry. In 21st century, aluminum is second to steel in automotive sector, because of its high strength to weight ratio. In current era, casted components of Al-Si alloy and high strength Al 7xxx series alloys are being used from low load to high load components. The primary study of this research was to achieve the defect free deposition of Al-Si and Al 7050 alloy. Al-Si alloys samples have been manufactured at lab scale using various additive manufacturing processes, but so far there is no literature available to …


An Effective Methodology For Suppressing Structure-Borne Sound Radiation, Lingguang Chen Jan 2017

An Effective Methodology For Suppressing Structure-Borne Sound Radiation, Lingguang Chen

Wayne State University Dissertations

ABSTRACT

AN EFFECTIVE METHODOLOGY FOR SUPPRESSING

STRUCTURE-BORNE SOUND RADIATION

by

LINGGUANG CHEN

December 2017

Advisor: Dr. Sean F. Wu

Major: Mechanical Engineering

Degree: Doctor of Philosophy

This dissertation is primarily concerned with the development of an effective methodology for reducing structure-borne sound radiation from an arbitrarily shaped vibrating structure. There are three major aspects that separate the present methodology from all the previous ones. Firstly, it is a non-contact and non-invasive approach, which is applicable to a class of vibrating structures encountered in engineering applications. Secondly, the input data consists of a combined normal surface velocity distribution on a portion …


Strain Rate Dependence And Impact Behavior Of Abs (Acrylonitrile-Butadiene-Styrene) Amorphous Thermoplastic, Mehmet Akif Dundar Jan 2017

Strain Rate Dependence And Impact Behavior Of Abs (Acrylonitrile-Butadiene-Styrene) Amorphous Thermoplastic, Mehmet Akif Dundar

Wayne State University Dissertations

ABS (acrylonitrile-butadiene-styrene) is an extensively utilized amorphous thermoplastic in numerous engineering applications, such as marine, aerospace, automotive, electronic enclosures and housings because it offers many distinctive material properties, including good impact resistance, high toughness, high stiffness and high compressive strength. The most considerable material quality of ABS is its excellent impact resistance compared to other amorphous thermoplastics and this distinguished material ability makes the ABS very appealing for such unique engineering applications where a good impact resistance is highly needed. Nevertheless, the material behavior of ABS under impact loads is highly complex due to chaotically arranged chain macromolecules and randomly …


Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke Jan 2017

Biomechanics Of Concussion: The Importance Of Neck Tension, Ron Jadischke

Wayne State University Dissertations

Linear and angular velocity and acceleration of the head are typically correlated to concussion. Despite improvements in helmet performance to reduce accelerations, a corresponding reduction in the incidence of concussion has not occurred (National Football League [NFL] 1996 – present).

There is compelling research that forces on and deformation to the brain stem are related to concussion. The brain stem is the center of control for respiration, blood pressure and heart rate and is the root of most cranial nerves. Injury to the brain stem is consistent with most symptoms of concussion reported in the National Football League and the …


Flexural Creep Behavior Of Adhesively Bonded Metal And Composite Laminates, Hasan M. Nuwayer Jan 2017

Flexural Creep Behavior Of Adhesively Bonded Metal And Composite Laminates, Hasan M. Nuwayer

Wayne State University Dissertations

Adhesively bonded structures exhibit time dependent behavior when subjected to constant load (creep). In this investigation, long-term creep behavior of adhesively bonded aluminum and carbon fiber composite beams under flexural loading was investigated. Three point bending test was selected because of its simplicity and the fact that bending stresses are quite common. In this study, two types of adhesively bonded beam specimens were tested: specimens prepared by adhesively bonding two aluminum beams and specimens prepared by adhesively bonding two unidirectional carbon fiber laminated beams. Accelerated creep tests were performed at higher temperatures up to 60 °C and deflection was measured …


Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen Jan 2017

Development Of A Finite Element Pelvis And Lower Extremity Model With Growth Plates For Pediatric Pedestrian Protection, Ming Shen

Wayne State University Dissertations

Finite element (FE) model is a useful tool frequently used for investigating the injury mechanisms and designing protection countermeasures. At present, no 10 years old (YO) pedestrian FE model has been developed from appropriate anthropometries and validated against limitedly available impact response data. A 10 YO child FE pelvis and lower extremities (PLEX) model was established to fill the gap of lacking such models in this age group. The baseline model was validated against available pediatric postmortem human subjects (PMHS) test data and additional scaled adult data, then the PLEX model was integrated to build a whole-body FE model representing …


Toward Human-Like Automated Driving: Learning Spacing Profiles From Human Driving Data, Syed Ali Jan 2017

Toward Human-Like Automated Driving: Learning Spacing Profiles From Human Driving Data, Syed Ali

Wayne State University Dissertations

For automated driving vehicles to be accepted by their users and safely integrate with traffic involving human drivers, they need to act and behave like human drivers. This not only involves understanding how the human driver or occupant in the automated vehicle expects their vehicle to operate, but also involves how other road users perceive the automated vehicle’s intentions. This research aimed at learning how drivers space themselves while driving around other vehicles. It is shown that an optimized lane change maneuver does create a solution that is much different than what a human would do. There is a need …


Combustion, Ionization And Sporadic Pre-Ignition In A Turbocharged Gasoline Direct Injection Engine., Shenouda Mekhael Jan 2016

Combustion, Ionization And Sporadic Pre-Ignition In A Turbocharged Gasoline Direct Injection Engine., Shenouda Mekhael

Wayne State University Dissertations

This research is focused on the use of ionization of combustion products in hydrocarbons-air flames to gain a better understanding of the combustion process in turbocharged gasoline direct injection engines. A GM 2.0 L Ecotec GDI-T engine is used in this investigation. The ion current is measured simultaneously by two in-cylinder combustion sensors: the spark plug and the fuel injector. The characteristics of the ion current signals produced by the two sensors are analyzed and correlated with the characteristics of the rate of heat release computed from the cylinder gas pressure. Since this is the first time for the fuel …


Design And Optimization Of Lithium Ion Battery For High Temperature Applications, Khalid Abdullitife Ababtain Jan 2016

Design And Optimization Of Lithium Ion Battery For High Temperature Applications, Khalid Abdullitife Ababtain

Wayne State University Dissertations

With massive commercial success of lithium ion batteries, the ability to operate at

and above 70 °C still a crucial issue and a safety concern to combat ever-increasing

global warming and to extend applications beyond portable electronics. Among various

components of battery, anode and electrolyte and the passivation layer formed between

them is crucial towards the development of Li-ion batteries for extendable temperature

range. In this regard, room temperature ionic liquids (RTILs) have the capability to

tackle thermal stability issues of lithium ion batteries but their poor compatibility with

traditional graphite anodes limits their practical application. Towards addressing this

issue, …


Development Of An Elderly Female Torso Finite Element Model For Restraint System Research And Development Applications, Anil Kalra Kalra Jan 2016

Development Of An Elderly Female Torso Finite Element Model For Restraint System Research And Development Applications, Anil Kalra Kalra

Wayne State University Dissertations

Elderly females are found to be one of the most vulnerable segments of population during motor vehicle crashes and their population is increasing in the coming decades. Current design of restraint systems as well as other passive safety measures are designed based on anthropomorphic details of younger population. Developing another dummy representing elderly female population is a costly effort, while a finite element (FE) model of elderly female with similar anthropomorphic details and age- and gender-specific material properties can be a better alternative solution. The current research focuses on the development of a FE model of an elderly female torso, …


Torque Accuracy Improvement Via Explicit Torque Feedback Control For Internal Combustion Spark Ignition Engines, Anwar Alkeilani Jan 2016

Torque Accuracy Improvement Via Explicit Torque Feedback Control For Internal Combustion Spark Ignition Engines, Anwar Alkeilani

Wayne State University Dissertations

At the present time, both control and estimation accuracies of engine torque are causes for under-achieving optimal drivability and performance in today’s production vehicles. The major focus in this area has been to enhance torque estimation and control accuracies using existing open-loop torque control and estimation structures. Such an approach does not guarantee optimum torque tracking accuracy and optimum estimation accuracy due to air flow and efficiencies estimations errors. Furthermore, current approach overlooks the fast torque path tracking which does not have any related feedback. Recently, explicit torque feedback control has been proposed in the literature using either estimated or …


Electrocatalysis In Li-S Batteries, Hesham I. Al Salem Jan 2016

Electrocatalysis In Li-S Batteries, Hesham I. Al Salem

Wayne State University Dissertations

Stabilizing polysulfide-shuttle process while ensuring high sulfur loading holds the key to realize high theoretical energy density (2500 Wh/kg) of lithium-sulfur (Li-S) batteries. Though several carbon based porous materials have been used as host structures for sulfur and its intermediate polysulfides, the week adsorption of polysulfides on carbon surface and its poor reaction kinetics limits them from practical application. Here, we preset a novel ‘electcatalysis’ approach to stabilize polysulfide shuttle process and also enhance its red-ox kinetics. As a proof of concept, we have studied in-detail using conventional electrocatalyst i.e Pt/graphene composite, further the same extended to cost-effective electrocatalysts such …


Static And Dynamic Behavior Of Carbon Fiber Reinforced Aluminum (Carall) Laminates, Gurpinder Singh Dhaliwal Jan 2016

Static And Dynamic Behavior Of Carbon Fiber Reinforced Aluminum (Carall) Laminates, Gurpinder Singh Dhaliwal

Wayne State University Dissertations

STATIC AND DYNAMIC BEHAVIOUR OF CARBON FIBER REINFORCED ALUMINUM (CARALL) LAMINATES

by

GURPINDER SINGH DHALIWAL

Advisor: Dr. Golam Newaz

Major: Mechanical Engineering

Degree: Doctor of Philosophy

The main aim of this research work was to investigate the static and dynamic properties of carbon fiber reinforced aluminum laminates cured without using any external adhesive and acid treatment of aluminum layers. A comprehensive study was undertaken to study the effect of adding epoxy resin rich polyester synthetic surface veil cloth layers on the failure modes and flexural and tensile response of these fiber metal laminates (FMLs). The main purpose of adding veil …


Arbitrary Lagrangian-Eulerian Method Investigation On Fuel Tank Strap Simulation Under Proving Ground Condition, Guangtian Song Jan 2016

Arbitrary Lagrangian-Eulerian Method Investigation On Fuel Tank Strap Simulation Under Proving Ground Condition, Guangtian Song

Wayne State University Dissertations

The Arbitrary Lagrangian-Eulerian (ALE) is a hybrid finite element formulation that can alleviate many of the drawbacks from the traditional Lagrangian-based and Eulerian-based finite element simulations, which is developed through combining modern algorithms for Lagrangian hydrodynamics, meshing technology and remap methods developed for high-resolution Eulerian methods. Lagrangian-based finite element formulations is that the computational system moves with the material and main drawback is that it will face severe problems to deal with strong distortions in the computational domain. Eulerian-based finite element formulations is that the computational system is a prior fixed in space and unable to deal easily with fluids …


Stop Identity Cues As A Cue To Language Identity, Paula Lisa Castonguay Jan 2016

Stop Identity Cues As A Cue To Language Identity, Paula Lisa Castonguay

Wayne State University Dissertations

The purpose of the present study was to determine whether language membership could potentially be cued by the acoustic-phonetic detail of word-initial stops and retained all the way through the process of lexical access to aid in language identification. Of particular interest were language-specific differences in CE and CF word-initial stops. Experiment 1 consisted of an interlingual homophone production task. The purpose of this study was to examine how word-initial stop consonants differ in terms of acoustic properties in Canadian English (CE) and Canadian French (CF) interlingual homophones. The analyses from the bilingual speakers in Experiment 1 indicate that bilinguals …


Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman Jan 2015

Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman

Wayne State University Dissertations

Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic …


Specialized Inter-Particle Interaction Lbm For Patterned Superhydrophobic Surfaces, Amal Saeed Yagub Jan 2015

Specialized Inter-Particle Interaction Lbm For Patterned Superhydrophobic Surfaces, Amal Saeed Yagub

Wayne State University Dissertations

SPECIALIZED INTER-PARTICLE INTERACTION LBM FOR PATTERNED SUPERHYDROPHOBIC SURFACES

by

AMAL S. YAGUB

ABSTRACT:

Superhydrophobic surface characteristics are important in many industrial applications, ranging from the textile to the military. It was observed that surfaces fabricated with nano/micro roughness can manipulate the droplet contact angle, thus providing an opportunity to control the droplet wetting characteristics. The Shan and Chen (SC) lattice Boltzmann model (LBM) is a good numerical tool, which holds strong potentials to qualify for simulating droplets wettability. This is due to its realistic nature of droplet contact angle (CA) prediction on flat smooth surfaces. But SC-LBM was not able …


Face Sheet/Core Debonding In Sandwich Composites Under Static And Fatigue Loading, Manjinder Singh Warriach Jan 2015

Face Sheet/Core Debonding In Sandwich Composites Under Static And Fatigue Loading, Manjinder Singh Warriach

Wayne State University Dissertations

Delamination growth due to face sheet/core debonding is a major concern due to its inherent weakness in sandwich composites which can be exacerbated due to the presence of flaws. In this research work The primary objective of this research was to characterize the delamination crack growth behavior in E-glass face sheet/polyurethane foam core sandwich composite with pre-existing initial delamination crack at a face sheet/core interface under static and fatigue for mode I and mixed mode loading. For mode I static loading two types of delamination experiments, namely T-peel test and wedge test were implemented to evaluate fracture toughness in polyurethane …


Helmholtz Equation Least Squares Based Near-Field Acoustic Holography With Laser, Wu Zhu Jan 2015

Helmholtz Equation Least Squares Based Near-Field Acoustic Holography With Laser, Wu Zhu

Wayne State University Dissertations

This dissertation presents the HELS based NAH with laser and use normal surface velocity as input in near-field acoustic holography. The conventional HELS based NAH uses acoustic pressure as input to reconstruct sound field quantities, while this modified HELS based NAH with laser utilizes the normal surface velocities measured by LDV to reconstruct the acoustic quantities at interested positions. Theoretical principles of the HELS based NAH with laser have been fully developed and the method has been verified in theoretical perspective. Two theoretical examples verify that HELS based NAH with laser can obtain exactly the same results as analytic solution. …


Effect Of Impact Damage On Compression-Compression Fatigue Behavior Of Sandwich Composites, Ali M. Al-Sharif Jan 2015

Effect Of Impact Damage On Compression-Compression Fatigue Behavior Of Sandwich Composites, Ali M. Al-Sharif

Wayne State University Dissertations

The aim of this research work was to investigate the effect of impact damage on in-plane buckling and compression-compression fatigue behavior for a new sandwich structure made from E-glass/epoxy face sheets over end-grain balsa wood core. Low velocity impact tests were carried out using a drop-weight impact tower by impacting the sandwich beam at the center with energy level slightly higher than threshold energy level of 8.8 J. Edge-wise compression static tests were conducted for impacted and non-impacted samples to address energy absorption characteristics of these composites. Analytical and experimental investigations were carried out to measure critical buckling loads and …