Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Mechanical Engineering

Wayne State University Dissertations

Creep

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Flexural Creep Behavior Of Adhesively Bonded Metal And Composite Laminates, Hasan M. Nuwayer Jan 2017

Flexural Creep Behavior Of Adhesively Bonded Metal And Composite Laminates, Hasan M. Nuwayer

Wayne State University Dissertations

Adhesively bonded structures exhibit time dependent behavior when subjected to constant load (creep). In this investigation, long-term creep behavior of adhesively bonded aluminum and carbon fiber composite beams under flexural loading was investigated. Three point bending test was selected because of its simplicity and the fact that bending stresses are quite common. In this study, two types of adhesively bonded beam specimens were tested: specimens prepared by adhesively bonding two aluminum beams and specimens prepared by adhesively bonding two unidirectional carbon fiber laminated beams. Accelerated creep tests were performed at higher temperatures up to 60 °C and deflection was measured …


Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman Jan 2015

Rheology Of Cross-Linked Polymers And Polymer Foams: Theory And Experimental Results, John Herman

Wayne State University Dissertations

Typical polymers have a time-dependent response to loading which results in stress relaxation or creep. Models using springs/dashpots or Volterra integrals are capable of predicting the material response, but place little or no emphasis on the reasoning behind the response. This research proposes a microscopic reasoning behind polymer chain movement, while developing a model to predict the creep and stress relaxation of a polymer foam. Based on the theorized slip/stick of polymer chains as they slide past each other, this model successfully predicts the behavior of a PMI polymer foam under tensile loads. This model lends insights into polymer microscopic …