Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Materials Science and Engineering

Polymer

Institution
Publication Year
Publication

Articles 1 - 30 of 66

Full-Text Articles in Engineering

Effect Of Environmental And Ultraviolet Degradation On The Albedo Of Polyethylene Sheet Materials For Improved Energy Harvesting By Bifacial Photovoltaic Power Plants, William A. Jang, Roxy H. Jackson-Gain Jun 2023

Effect Of Environmental And Ultraviolet Degradation On The Albedo Of Polyethylene Sheet Materials For Improved Energy Harvesting By Bifacial Photovoltaic Power Plants, William A. Jang, Roxy H. Jackson-Gain

Materials Engineering

Solar energy farms typically utilize monofacial photovoltaic (mPV) cells in their arrays to capture direct sunlight to produce renewable energy. However, the efficiency of these farms can be increased by 2 – 6% through the implementation of bifacial photovoltaic cells (bPV). These bPV cells function by capturing incident ultraviolet (UV) light energy that is reflected off the surface to increase its overall energy production. The amount of UV energy that is reflected is dependent on the albedo value of surface, which is a measure of energy reflectance. In this study, samples of unreinforced polyethylene (PE), scrim-reinforced polyethylene (SR-PE), and woven …


Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver Jan 2023

Beeswax Wraps As An Alternative To Single-Use Plastics, Sarah Skiver

Williams Honors College, Honors Research Projects

The project goal was to compare the food storage efficacy of sustainable beeswax wraps verses the single-use plastic methods of resealable plastic sandwich bags and plastic cling wrap. The goal was also to test the reusability of the beeswax wraps, as it is a key advantage of beeswax wraps that is advertised. The project purpose was to explore sustainable and eco-friendly alternatives to single use plastics, which are harmful to the environment in both their production and their disposal. Food spoilage was compared in beeswax wrap, plastic sandwich bags, and plastic cling wrap, and spoilage was also observed in a …


Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw Dec 2022

Effects Of Polymer Side-Group Size On Interfacial Mechanics Of Graphene-Polymer Nanocomposites, Grace Brokaw

All Theses

Graphene-reinforced polymer nanocomposites possess excellent mechanical, thermal, and electrical properties, which make them promising candidates for various applications. Favorable interfacial interactions and mechanics between graphene sheets and polymer matrices are often essential to achieve superior mechanical properties. Nevertheless, it remains largely elusive how molecular features of polymer systems, particularly the side-group size of polymer chains, affect the interfacial mechanics between graphene sheets and polymer matrices, primarily due to challenges in well controlling these features in experiments. On the other hand, exploring their roles in the mechanical properties of graphene-polymer nanocomposites is very expensive to study with all-atomistic molecular dynamics (MD) …


Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws Aug 2022

Functional Bottlebrush Polymer Additives For Thin Films And Coatings, Travis S. Laws

Doctoral Dissertations

Bottlebrush polymers are a class of highly branched polymers consisting of polymeric side chains that are densely grafted to a linear backbone. Their highly branched architecture results in surface enrichment across a broad range of materials. The goal of my research has been centered around the design of functional bottlebrush polymers and their use as surface active additives in blend films and coatings.

In the first chapter, we examine the segregation behavior of polystyrene bottlebrushes that are blended with linear polystyrene. We systematically vary the lengths of the bottlebrush backbone (Nb), side-chain (Nsc), and the linear matrix (Nm) in order …


Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield Aug 2022

Characterization Of Thermal Gelation Properties In Bioresorbable Thermally Activated Hydrogel Polymers For Hernia Surgery Applications, Alexander Mayfield

All Theses

Hydrogel adhesives are a new class of materials with excellent biocompatibility, which makes them very attractive for biomaterial applications. It has been previously shown that Tetronic T1107, a four-arm poly (propylene oxide)-poly (ethylene oxide) (PPO-PEO) block copolymer, is useful as a chemical crosslinking thermo-responsive hydrogel for bioadhesive applications. The end groups of this polymer are modified with acrylate and N-hydroxysuccinimide (NHS) functional groups. The acrylate end group gives the polymer cohesive properties with long-range chemical crosslinking using dithiothreitol (DTT), while the NHS end group gives the polymer adhesive properties through bonding with amines found in organic tissue. It was found …


3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio Aug 2022

3d Printed Multicomponent Polymer Based Materials Via Hybrid Filaments: Fabrication And Characterization, Erik Antonio

All Dissertations

Additive manufacturing, also known as 3D printing, promises a manufacturing revolution for both industry and academic circles. One of the most widely used method of 3D printing is Fused Deposition Modeling (FDM) or Fused Filament Fabrication (FFF), which requires a thermoplastic filament to be directed towards a heating block and then deposited via extrusion layer by layer to produce a finished part. However, there are significant issues with this technology, mainly a limitation on the materials available for use and mechanical property deficiencies when compared to traditional manufacturing. These issues are brought about by the temperature limited nature of the …


Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg Jun 2022

Additive Manufacturing Of Sub-Micron Features And Mechanical Linkages, David K. Limberg

Doctoral Dissertations

In recent years material constraints have become the limiting factor in several fields, including batteries, robotics, and medicine, and these needs have prompted the development of materials with programmable properties. To this end, much effort has been dedicated to designing metamaterials that have unprecedented optical, mechanical, and thermal properties, along with systems for additive manufacturing to build their complex structures with high precision and throughput. The field of additive manufacturing has proved to be a platform for innovation across many industries yet is still limited with regards to feature sizes, print rates, and diversity of materials. Mechanical devices like linkages …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque May 2022

Cmos Compatible Carbonization Of Polymer For Elctrochemical Sensors, Mohammad Aminul Haque

Doctoral Dissertations

Carbon-based electrodes that are integrable with CMOS readout electrodes possess great potential in a wide range of cutting-edge applications. The primary scientific contribution is the development of a processing sequence which can be implemented on CMOS chips to fabricate pyrolyzed carbon microelectrodes from 3D printed polymer microstructures to develop lab-on-CMOS monolithic electrochemical sensor systems. Specifically, optimized processing conditions to convert 3D printed polymer micro- and nano-structures to carbonized electrodes have been explored in order to obtain sensing electrodes for lab-on- CMOS electrochemical systems. Processing conditions have been identified, including a sequel of oxidative and inert atmosphere anneals to form pyrolyzed …


Graphene Oxide-Thermoplastic Nanocomposites: Fabrication And Properties, Seyedeh Mastooreh Seyedi Ghezghapan May 2022

Graphene Oxide-Thermoplastic Nanocomposites: Fabrication And Properties, Seyedeh Mastooreh Seyedi Ghezghapan

All Dissertations

Polymer nanocomposites are used for a wide variety of applications. These nanocomposites can have a number of important characteristics depending on the nature of the nanomaterial, its size, volume fraction, its distribution, and interactions within the host polymer. Mechanical strength, thermal and electrical conductivity are some of these materials' most focused and studied features. Besides the positive influences of the reinforcements, nanomaterials also might have some adverse impacts on the polymer matrix. These issues could arise from the aggregation of the fillers and the poor interfacial interactions of the components. Several approaches are introduced to modify the nanofillers and enhance …


Plasma Treatment Of High-Density Polyethylene, Linear Low-Density Polyethylene, And Polyvinyl Chloride Geomembranes By Air And Oxygen, Merve Koca Uyar Oct 2021

Plasma Treatment Of High-Density Polyethylene, Linear Low-Density Polyethylene, And Polyvinyl Chloride Geomembranes By Air And Oxygen, Merve Koca Uyar

USF Tampa Graduate Theses and Dissertations

High-density polyethylene (HDPE), linear low-density polyethylene (LLDPE), and polyvinyl chloride (PVC) geomembranes were treated with air and oxygen plasma. The purpose of air and oxygen plasma treatment of geomembrane surface is to increase the surface wettability of these materials, thereby increasing adhesive properties. Increasing adhesive properties enables a surface to be coated with a desired material with antibacterial, antioxidant, and UV resistant characteristics, without changing bulk material properties. To protect the geomembranes from oxidation degradation, UV degradation and biological degradation, it is important to increase the antibacterial, antioxidant, and UV resistant properties of geomembrane. Before and after the plasma treatments …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Development Of Biomaterials For Drug Delivery, Raquel De Castro May 2021

Development Of Biomaterials For Drug Delivery, Raquel De Castro

Graduate Theses and Dissertations

Drug delivery systems (DDS) have highly evolved in the last decades with the development of hydrogels and nanoparticles. However, high systemic uptake, side effects, low bioavailability, and encapsulation efficiency continue to be a major hurdle faced by such DDSs.

Nanoparticles and hydrogels can be specifically designed for targeted DDSs to mitigate some of the problems. This dissertation aimed to design two DDSs for ocular drug delivery and one for cancer treatment. The first project sought to develop chitosan nanoparticles (Cs-NP) using PEGDA as a copolymer to encapsulate gentamicin (GtS) for ocular drug delivery. Cs-NPs contain positive charges that can interact …


Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari Jan 2021

Multi-Level Analysis Of Atomic Layer Deposition Barrier Coatings On Additively Manufactured Plastics For High Vacuum Applications, Nupur Bihari

Dissertations, Master's Theses and Master's Reports

While hardware innovations in micro/nano electronics and photonics are heavily patented, the rise of the open-source movement has significantly shifted focus to the importance of obtaining low-cost, functional and easily modifiable research equipment. This thesis provides a foundation of open source development of equipment to aid in the micro/nano electronics and photonics fields.

First, the massive acceptance of the open source Arduino microcontroller has aided in the development of control systems with a wide variety of uses. Here it is used for the development of an open-source dual axis gimbal system. This system is used to characterize optoelectronic properties of …


Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu Aug 2020

Computational Materials Science And Engineering: Model Development And Case Study, Yihan Xu

Theses and Dissertations

This study presents three tailored models for popular problems in energy storage and biological materials which demonstrate the application of computational materials science in material system development in these fields. The modeling methods can be extended for solving similar practical problems and applications.

In the first application, the thermo-mechanical stress concentrated region in planar sodium sulfur (NaS) cells with large diameter and different container materials has been estimated as well as the shear and normal stresses in these regions have been quantified using finite-element analysis (FEA) computation technique. It is demonstrated that the primary failure mechanism in the planar NaS …


Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson May 2020

Effects Of Hard-To-Soft Segment Ratios On The Synthesis And Physico-Mechanical Properties Of Polyurethane Films, Aaron C. Wilson

Mechanical Engineering Theses

Blood-contacting cardiovascular stents often induce a secondary clotting event due to unrestricted enzymatic activities. The use of hemocompatible polyurethane coatings on these implantable devices is one of the most promising methods to reduce device rejection. In this study, four commercial polyurethane films of various thicknesses and compositions were evaluated for their anticoagulation properties. Results suggested that these films exhibited excellent thermal and physico-mechanical properties while capable of increasing contact time with blood plasma by over a thousand-fold as compared to a control surface. Due to the unknown structure and composition of these commercial films, polyurethane samples were synthesized from toluene …


Development Of Multi-Axial Fatigue Retrofits For Lock Gate Components, Logan Verkamp May 2020

Development Of Multi-Axial Fatigue Retrofits For Lock Gate Components, Logan Verkamp

Graduate Theses and Dissertations

Lock gates are essential infrastructure components to the United State (US) supply chain. They create large cost savings and environmental benefits when compared with traditional methods of transport (freight and rail). Because of the large quantity of goods and dependence on these shipping chains, the US economy can be drastically affected by an unexpected gate closure. Unfortunately, many lock gates within the US have reached or exceeded their designed life. Due to the intensity of cyclic loads and the environment, fatigue cracks have become a prominent issue. Developed cracks near the pintle region (a joint which the gate rotates and …


Tailoring Photodegradation Rates Of Acetal-Containing Polymer Networks, Michael Sandoz May 2020

Tailoring Photodegradation Rates Of Acetal-Containing Polymer Networks, Michael Sandoz

Honors Theses

In this thesis, we explore the degradation of poly (thioether acetal) thermosets via a photoinduced thiol-catalyzed ß-scission of acetal linkages incorporated as network crosslink junctions. Specifically, a library of bis-allyl acetal-containing monomers derived from para-substituted benzaldehydes was synthesized and formulated into photopolymerizable thiol-ene resins with commercially available thiol monomers. By varying the electron donating or withdrawing nature of the monomer substituent, we explored the impact of substituent effects on the rate of polymer degradation. Furthermore, we compare the results to those expected from a classical Hammett-type relationship of substituent electronic effects. FTIR was employed to track the appearance of the …


Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur Mar 2020

Surface Driven Flows : Liquid Bridges, Drops And Marangoni Propulsion, Samrat Sur

Doctoral Dissertations

Molecules sitting at a free liquid surface against vacuum or gas have weaker binding than molecules in the bulk. The missing (negative) binding energy can therefore be viewed as a positive energy added to the surface itself. Since a larger area of the surface contains larger surface energy, external forces must perform positive work against internal surface forces to increase the total area of the surface. Mathematically, the internal surface forces are represented by surface tension, defined as the normal force per unit of length. One common manifestation of surface tension is the difference in pressure it causes across a …


Towards Completely Automated Glycan Synthesis, Matteo Panza Nov 2019

Towards Completely Automated Glycan Synthesis, Matteo Panza

Dissertations

Carbohydrates are ubiquitous both in nature as biologically active compounds and in medicine as pharmaceuticals. Although there has been continued interest in the synthesis of carbohydrates, chemical methods require specialized knowledge and hence remain cumbersome. The need for development of rapid, efficient and operationally simple procedures has come to the fore. This dissertation focuses on the development of a fully automated platform that will enable both experts and non-specialists to perform the synthesis of glycans. Existing automated methods for the synthesis of oligosaccharides are highly sophisticated, operationally complex, and require significant user know-how. By contrast, high performance liquid chromatography (HPLC) …


Sorption Of Benzene, Toluene, Ethylbenzene And Different Ratios Of Mixture Solvent By Plasticized Pema Films Using A Qcm Sensor, Xinpeng Li Nov 2019

Sorption Of Benzene, Toluene, Ethylbenzene And Different Ratios Of Mixture Solvent By Plasticized Pema Films Using A Qcm Sensor, Xinpeng Li

USF Tampa Graduate Theses and Dissertations

VOCs (volatile organic compounds) can cause great harm to human health especially benzene, toluene and ethylbenzene. In this work a Quartz Crystal Microbalance (QCM) sensor with a polymer/plasticizer film was developed to quantify the VOCs both in air and water. QCM is an acoustic wave sensor that can be used well in detecting the aromatic compounds in the film. Because more than one VOC is present in the air, this thesis focuses on finding the sorption of different ratios of VOCs (benzene, toluene, ethylbenzene) using a polymer/plasticizer film in QCM. Poly (ethyl methacrylate) (PEMA) was used as the polymer because …


Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim Oct 2019

Polymeric Impulsive Actuation Mechanisms: Development, Characterization, And Modeling, Yongjin Kim

Doctoral Dissertations

Recent advances in the field of biomedical and life-sciences are increasingly demanding more life-like actuation with higher degrees of freedom in motion at small scales. Many researchers have developed various solutions to satisfy these emerging requirements. In many cases, new solutions are made possible with the development of novel polymeric actuators. Advances in polymeric actuation not only addressed problems concerning low degree of freedom in motion, large system size, and bio-incompatibility associated with conventional actuators, but also led to the discovery of novel applications, which were previously unattainable with conventional engineered systems. This dissertation focuses on developing novel actuation mechanisms …


Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell Jun 2019

Maximizing Poly(3-Butylthiophene-2,5-Diyl) Electrical Conductivity By Maximizing Transcrystal Growth, Edward Alexander Bicknell

Materials Engineering

Polymers are generally considered electrical insulators. Despite this, research in the mid 1970’s found that polymers consisting of a conjugated backbone structure could become electrically conductive upon doping.1 The conjugated polymer analyzed for this project was poly(3-butylthiophene-2,5-diyl) (P3BT). Transcrystals have been found as a way to promote electrical conductivity through mechanisms including π bond atomic orbital overlap and electron mobility.2 In theory, maximizing transcrystal length would also maximize P3BT electrical conductivity, increasing its applicable use in electronic devices. The goal of this project was to determine a methodological way to maximize P3BT electrical conductivity by producing the longest transcrystal length …


Non-Toxic Soil Thickeners For Reducing Mudslide Intensity, Miranda Miao, Isaac Blackburn, Erika Haley Yao Jun 2019

Non-Toxic Soil Thickeners For Reducing Mudslide Intensity, Miranda Miao, Isaac Blackburn, Erika Haley Yao

Materials Engineering

Non-toxic food thickeners were investigated as a solution for thickening mud to mitigate the effects of mudslides. All soil was obtained from a site on the California Polytechnic State University campus where a mudslide occurred in 2017. Guar gum was mixed into the soil at 1 wt% and 10 wt% of the moisture content in the soil. Whey protein was mixed into the soil at 2 wt% and 19 wt% of the moisture content in the soil. The soils’ liquid limit was found using the Casagrande cup testing method. Liquid limit testing indicated that thickeners raised the liquid limit, most …


Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi May 2019

Active Polymeric Materials For 3d Shaping And Sensing, Adebola Oyefusi

Theses and Dissertations

Part I: Reprogrammable Chemical 3D Shaping for Origami, Kirigami, and Reconfigurable Molding

Origami- and kirigami-based design principles have recently received strong interest from the scientific and engineering communities because they offer fresh approaches to engineering of structural hierarchy and adaptive functions in materials, which could lead to many promising applications. Herein, we present a reprogrammable 3D chemical shaping strategy for creating a wide variety of stable complex origami and kirigami structures autonomously. This strategy relies on a reverse patterning method that encodes prescribed 3D geometric information as a spatial pattern of the unlocked phase (dispersed phase) in the locked phase …


Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly Mar 2019

Chemical Stability And Performance Influence Of Choice Substituents And Core Conjugation Of Organic Semiconductors, Jack Ly

Doctoral Dissertations

Realizing organic based active materials for electronic devices, such as thin film transistors and photovoltaics, has been long sought after. Advancement in the field driven by chemists, engineers, and physicists alike have bolstered organic based semiconductor performance levels to rival those of traditional inorganic amorphous silicon-based devices. Within the field of organic semiconductors (OSC), two categories of active materials may be generalized: (1) polymer and (2) small molecule semiconductors. Each class of OSC inherently have their own advantages and disadvantages. Polymer semiconductors (PSC) allow a wide range in tunability via choice monomers and side chain engineering to illicit desirable energy …


Compression Set Improvement Of Thermoplastic Vulcanizates For High Temperature Tubing, Mitchell Valaitis Jan 2019

Compression Set Improvement Of Thermoplastic Vulcanizates For High Temperature Tubing, Mitchell Valaitis

Williams Honors College, Honors Research Projects

It was hypothesized that increasing the curative level of the fluorocarbon rubber (FKM) used in manufacturing of thermoplastic vulcanizate (TPV) materials would decrease the compression set values of the TPV enough for it to be suitable as a flexible, lightweight alternative to high operating temperature thermoset rubber tubing currently being used for power steering hose. First, promising TPV formulations were identified by varying the polyamide (PA) and FKM used in a Brabender mixer. Four different types of polyamide and four different types of FKM were investigated, with two of the FKM types and one polyamide type identified as being promising. …


Chemical Modification Of Lignin Into Advanced Materials, Soheil Hajirahimkhan Aug 2018

Chemical Modification Of Lignin Into Advanced Materials, Soheil Hajirahimkhan

Electronic Thesis and Dissertation Repository

Fossil fuel resources are being used today for most of humankind’s energy and chemical/material needs. The inevitable demise of these resources has created significant interest in the field of biomass and particularly, lignin valorization. As the world’s second most abundant polymer, more than 98% of the annually produced lignin is under-utilized either as an on-site heat source, or as landfill. Thus, finding practical approaches to modifying this inexpensive sustainable resource into materials of high value can be the next leap in lessening the dependence on fossil fuel resources and thus, developing a sustainable future.

In this thesis, kraft lignin is …


Exploring The Relationship Between Cellular Structure And Mechanical Properties Of Polymer Foams, Timothy Lee Tan Jun 2018

Exploring The Relationship Between Cellular Structure And Mechanical Properties Of Polymer Foams, Timothy Lee Tan

Materials Engineering

Polymer foams are the material of choice for applications that require comfort, cushioning, and high energy absorption. While popular, the relationship between their microstructure and their mechanical properties is not yet strongly predictable. The aim of this project is to look at the different relationships between the area or volume occupied by pores compared to the amount of solid material and determine which method of quantifying this relationship will provide the best prediction of mechanical properties. To examine this relationship, foams of various densities made from either ethylene-co-vinyl acetate or thermoplastic polyurethane were first physically characterized through three methods: (1) …


Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran Jan 2018

Characterization Of 3d Printed Polylactic Acid/ Polycaprolactone/Titanium Dioxide Composites For Bone Replacement And Grafting, Sandra Elena Najera Beltran

Open Access Theses & Dissertations

A material that mimics the properties of bones was developed by optimizing the ratio of polymer composites of polylactic acid (PLA) and poly-ε-caprolactone (PCL), containing small amounts of titanium oxide (TiO2). Although titanium-based alloys have commonly been used for bone replacement procedures due to their biocompatibility with the human body and their mechanical properties, stress shielding continues to be a problem. The structure of a bone has a porosity which permits the flow of nutrients, blood, oxygen and minerals, and is an issue at the time of creating bone replacements using conventional methods. PLA and PCL have been used in …