Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

The Summer Undergraduate Research Fellowship (SURF) Symposium

2016

Discipline
Keyword

Articles 1 - 30 of 108

Full-Text Articles in Engineering

Control System Research And Development To Support Virtual Prototyping Of Pump And Motors, Rajith Weerasinghe, Monika Ivantysynova, Paul Kalbfleisch Sep 2016

Control System Research And Development To Support Virtual Prototyping Of Pump And Motors, Rajith Weerasinghe, Monika Ivantysynova, Paul Kalbfleisch

The Summer Undergraduate Research Fellowship (SURF) Symposium

Virtual prototyping of positive pumps and motors is incredibly useful, increasing speed of development and lowering cost. The calculations of fluids discharge pressure, displaced by a swashplate-type-axial piston pump/motor is dependent on the load impedance driven by the unit. The load impedance is estimated by a variable orifice found downstream of the unit. Similarly, the suction line impedance is also estimated with an orifice. The current project aims to evaluate the various loading architectures in their ability to quickly and accurately create the desired impedance. The robustness of the loading architectures was tested on a wide range of pump sizes, …


Characterization Of Superabsorbent Polymers In Aluminum Solutions, Nicholas D. Macke, Matthew J. Krafcik, Kendra A. Erk Aug 2016

Characterization Of Superabsorbent Polymers In Aluminum Solutions, Nicholas D. Macke, Matthew J. Krafcik, Kendra A. Erk

The Summer Undergraduate Research Fellowship (SURF) Symposium

Over the past few decades, super absorbent polymers (SAPs) have been the topic of research projects all around the world due to their incredible ability to absorb water. They have applications in everything from disposable diapers to high performance concrete. In concrete, aqueous cations permeate the polymer network, reducing swelling and altering properties. One of these ions, aluminum, alters SAP properties by creating a stiff outer shell and greatly reducing absorbency, but these effects have not been well characterized. One method of characterizing the effects of aluminum on SAP hydrogels was performing gravimetric swelling tests to determine equilibrium water capacity …


Exploring How Haptics Contributes To Immersion In Virtual Reality, Dimcho Zhelyazkov Karakashev, Hong Z. Tan Aug 2016

Exploring How Haptics Contributes To Immersion In Virtual Reality, Dimcho Zhelyazkov Karakashev, Hong Z. Tan

The Summer Undergraduate Research Fellowship (SURF) Symposium

Virtual Reality (VR) has been around for more than fifty years but the technology hasn’t reached practical usability until very recently. With the current head-mounted display (HMD) technology and an abundance of investment in VR startups, we have finally reached at the point where it is possible to simulate complex virtual environments that feel immersive. A major problem with virtual reality is that everything looks real but you can not touch and feel virtual objects. We are focusing on developing a device that will allow users to feel what they touch in VR. We developed a hand-held interface and an …


Quantification And Characterization Of Aluminum Distributions In Commercial Beta And Mordenite Zeolites By Cobalt Exchange, Rebecca L. Reitzel, Claire T. Nimlos, Rajamani Gounder Aug 2016

Quantification And Characterization Of Aluminum Distributions In Commercial Beta And Mordenite Zeolites By Cobalt Exchange, Rebecca L. Reitzel, Claire T. Nimlos, Rajamani Gounder

The Summer Undergraduate Research Fellowship (SURF) Symposium

The aluminum distribution throughout the zeolite framework determines the structural, ion-exchange and catalytic properties of the zeolite. Several methods have been proposed to control the Al distribution, but in order to accurately assess these methods a procedure is needed to quantify Al distribution in various zeolite frameworks. Co2+ ions exchange onto the zeolite framework at Al pairs, and atomic absorbance spectroscopy (AAS) can be used to quantify the number of exchanged Co2+ ions and, in turn, the overall number of Al pairs. Each framework exhibits differences in pore size and channel configuration which affect the equilibrium conditions needed …


A Proposal For A Wirelessly Powered, Implantable Pressure Sensor And Neural Stimulator For The Control Of Urinary Incontinence, Robert N. Tucker, Christopher J. Quinkert, Pedro P. Irazoqui Aug 2016

A Proposal For A Wirelessly Powered, Implantable Pressure Sensor And Neural Stimulator For The Control Of Urinary Incontinence, Robert N. Tucker, Christopher J. Quinkert, Pedro P. Irazoqui

The Summer Undergraduate Research Fellowship (SURF) Symposium

47 to 53 percent of women over the age of 20 suffer from urinary incontinence, often caused by childbirth-related damage to the pelvic nerve. This uncertainty of when bladder voiding will occur causes social anxiety and can compromise quality of life. This study explores one method to restore the ability to sense the need to urinate and prevent unwanted voiding. We propose a device to measure pressure due to bladder content as the difference between pressure in the bladder and pressure in the abdominal cavity. Integrated circuits, biocompatible packaging, and wireless radiofrequency powering allow for a fully implantable device to …


Fluence Dependent Surface Modification On Tungsten Coatings Using Low Energy Helium Ion Irradiation At Elevated Temperatures, Cheng Ji, Jitendra K. Tripathi, Theodore J. Novakowski, Valeryi Sizyuk, Ahmed Hassanein Aug 2016

Fluence Dependent Surface Modification On Tungsten Coatings Using Low Energy Helium Ion Irradiation At Elevated Temperatures, Cheng Ji, Jitendra K. Tripathi, Theodore J. Novakowski, Valeryi Sizyuk, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nuclear fusion is the most promising renewable energy source for the near future. It can provide a large amount of energy using a very small amount of fuel, as compared with that of the coal, oil, or nuclear fission. The chain reaction in nuclear fusion produces the energy and fuel, from hydrogen isotopes available in see water. Tungsten (W) is a leading candidate material for the plasma-facing component (PFC) in nuclear fusion reactors such as ITER (international thermonuclear experimental reactor), because of its high melting point, high yield strength, low erosion and low hydrogen isotope retention. Recent studies showed deeply …


Effect Of Conveying And Distributive Mixing Elements On Breakage Phenomenon In Twin Screw Granulation, Jiayu Li, Shankali U Pradhan, Carl Wassgren Aug 2016

Effect Of Conveying And Distributive Mixing Elements On Breakage Phenomenon In Twin Screw Granulation, Jiayu Li, Shankali U Pradhan, Carl Wassgren

The Summer Undergraduate Research Fellowship (SURF) Symposium

Twin screw wet granulation (TSG) is gaining more attention and becoming an important process in the pharmaceutical industry. The process is widely implemented because of its flexibility, short residence time, and small equipment footprint. Past studies have shown that screw elements can have a significant impact on the performance of the TSG process. In addition, these studies identified that breakage of wet mass is a significant step in the process. Currently there is no literature that focuses on the effect of each screw element on the breakage process. In this work, experiments have been designed to isolate the breakage process …


Quantum Dot Lab : Incorporation Of Alloys In The Capping Layer Of Multi-Layer Quantum Dot, Unmesha U. Kale, Prasad Sarangapani, Jim Fonseca, Gerhard Klimeck Aug 2016

Quantum Dot Lab : Incorporation Of Alloys In The Capping Layer Of Multi-Layer Quantum Dot, Unmesha U. Kale, Prasad Sarangapani, Jim Fonseca, Gerhard Klimeck

The Summer Undergraduate Research Fellowship (SURF) Symposium

Quantum dots have enhanced the performance of several optoelectronic devices. Designing and obtaining optimal quantum dot structures requires intensive simulation. Quantum Dot Lab on nanoHUB provides such a simulation platform. The simulation is fully parallelized and depending on the structure, the tool decides the computational resource which is to be used for the simulation. To obtain accurate predictions of quantum dot structures it is essential to provide a variety of simulation parameters to the user. In this research, a user interface was created where the user can simulate alloys by Random distribution and by Virtual Crystal Approximation(VCA) type distribution in …


Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam Aug 2016

Large Scale Monolithic Solar Panel Simulation - A Study On Partial Shading Degradation, Suhas V. Baddela, Xingshu Sun, Muhammad A. Alam

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shadow-induced degradation is a major concern for both power output and long-term reliability in solar cells. Apart from the obvious fact that shading reduces the amount of solar irradiance available to solar panels, it may lead to formation of hot spots, where solar cells are forced to reverse breakdown with localized heating, and potentially, permanent damage. To get a better understanding of shadow-induced degradation, we develop an electro-thermal coupled simulator that can self-consistently solve the electrical and thermal distributions of solar panel under arbitrary shading conditions. The simulation framework consists of two part: a) compact models that can describe the …


Impact Of Microscope, Loupes, And Video Displays On Microsurgeons’ Risk For Musculoskeletal Injuries, Yiyu Shi, Denny Yu Aug 2016

Impact Of Microscope, Loupes, And Video Displays On Microsurgeons’ Risk For Musculoskeletal Injuries, Yiyu Shi, Denny Yu

The Summer Undergraduate Research Fellowship (SURF) Symposium

Microsurgery is commonly performed with operating microscopes or loupes to repair traumatic injuries, damage from cancer surgery, etc.; however, the prolonged, awkward, and constrained postures from using these equipment puts microsurgeons at risk for musculoskeletal pain and injuries. An alternative heads-up displays may improve surgeons’ ergonomics by allowing microsurgeons to perform the procedure in a more comfortable and ergonomic position. The study compares the effect of microscope, loupes and video displays on postures during microsurgical targeting task. This study incorporated three steps to contrast displays. Firstly, 12 participants wearing six reflective markers completed a surgery simulation using all three displays, …


Fiber-Optic Imaging In An Internal Combustion Engine Test Rig, Conor Martin, Michael Smyser, Aswin Ramesh, Greg Shaver, Terrence Meyer Aug 2016

Fiber-Optic Imaging In An Internal Combustion Engine Test Rig, Conor Martin, Michael Smyser, Aswin Ramesh, Greg Shaver, Terrence Meyer

The Summer Undergraduate Research Fellowship (SURF) Symposium

The formation of particulate matter (PM/soot), nitrogen oxides (NOx), and other byproducts of the combustion process in diesel engines is controlled by spatiotemporally varying quantities within the engine cylinders which traditional sensors cannot resolve. This study explores the use of an advanced sensing technique using an optical probe which can be used to produce highly spatiotemporally resolved in cylinder images of the flame formation during the combustion stroke. Using a fiber optic cable and custom lensing system adapted to fit a pre-existing pressure transducer port, light from within the cylinder can be transmitted through the imaging probe to a high …


Dynamic Modeling And Validation Of Micro-Chp Systems, Apurva Badithela, Neera Jain, Austin Nash Aug 2016

Dynamic Modeling And Validation Of Micro-Chp Systems, Apurva Badithela, Neera Jain, Austin Nash

The Summer Undergraduate Research Fellowship (SURF) Symposium

Micro-Combined Heat and Power (micro-CHP) units locally generate electricity to simultaneously provide power and heat for residential buildings. Apart from the potential benefits of reducing carbon emissions and increasing robustness to brownouts and blackouts, micro-CHP systems can be controlled to meet energy demands. Micro-CHP systems consist of a prime mover that generates electricity, such as a fuel cell, an internal combustion engine, or a Stirling engine, and a waste heat recovery system that enables utilization of heat generated as a byproduct of electricity generation. Often, a thermal energy storage system is integrated with micro-CHP systems, thereby decoupling, in time, the …


Multi-Objective Optimization Under Uncertainty Using The Hyper-Volume Expected Improvement, Martin Figura, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis Aug 2016

Multi-Objective Optimization Under Uncertainty Using The Hyper-Volume Expected Improvement, Martin Figura, Piyush Pandita, Rohit K. Tripathy, Ilias Bilionis

The Summer Undergraduate Research Fellowship (SURF) Symposium

The design of real engineering systems requires the optimization of multiple quantities of interest. In the electric motor design, one wants to maximize the average torque and minimize the torque variation. A study has shown that these attributes vary for different geometries of the rotor teeth. However, simulations of a large number of designs cannot be performed due to their high cost. In many problems, design optimization of multi-objective functions is a very challenging task due to the difficulty to evaluate the expectation of the objectives. Current multi-objective optimization (MOO) techniques, e.g., evolutionary algorithms cannot solve such problems because they …


Movement And Distribution Of Bacteria Near Surfaces, Daniel A. Quinkert, Adib Ahmadzadegan, Arezoo M. Ardekani Aug 2016

Movement And Distribution Of Bacteria Near Surfaces, Daniel A. Quinkert, Adib Ahmadzadegan, Arezoo M. Ardekani

The Summer Undergraduate Research Fellowship (SURF) Symposium

Bacteria are found everywhere in nature, including within human/animal bodies, biomedical devices, industrial equipment, oceans and lakes. They can be found in planktonic state within a bulk liquid phase or attached to surfaces with the potential to form biofilms. In this study we are interested in the movement and distribution of bacteria near surfaces. The concentrations and fluid interactions of bacteria were characterized at various distances from a surface. Psuedomonas putida F1 was observed in a suspension near a surface. Bacteria movements were visualized with an inverted microscope at 40x magnification. P. putida F1 exhibited greater density in close proximity …


Tfit Modeling Of Wave Propagation For Flow Excursion, Brachston Grubbs, Krishna Chetty, Martin Bertodano Aug 2016

Tfit Modeling Of Wave Propagation For Flow Excursion, Brachston Grubbs, Krishna Chetty, Martin Bertodano

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the nuclear power industry, the Two-Fluid Model (TFM) is mainly used in the simulation of Loss of Coolant Accident (LOCA). The Two-Fluid Model is a wave mechanics formulation that may also be used to analytically perform stability analysis, which requires numerous assumptions and simplifications. This project aimed to advance the TFIT-TFM simulations in the modeling of the flow excursion instability. By using the TFIT computational code, simulation results can be obtained without the need for assumptions and simplifications. In this project, a simulation was performed to verify the nonlinear wave propagation capability of TFIT. During the verification process, the …


Rapid Grain Boundary Mobility At Ambient Temperatures, Jarrod M. Lund, R Adam Bilodeau, Rebecca K. Kramer Aug 2016

Rapid Grain Boundary Mobility At Ambient Temperatures, Jarrod M. Lund, R Adam Bilodeau, Rebecca K. Kramer

The Summer Undergraduate Research Fellowship (SURF) Symposium

Understanding and measuring the influence of grain boundaries (planar defects in the crystalline structure of materials) and their motion has become a dominant aspect in materials research, with applications in additive manufacturing, fatigue prevention, and material modeling. However, modeling grain boundaries and grain boundary mobility (GBM) is difficult due to the high temperatures or external stresses, imaging solutions compatible with the material system, and long time-scales required to create measurable experimental results. In this paper, we introduce a novel material system that allows for easy and fast visualization of GBM. A drop of liquid metal eutectic gallium indium (eGaIn) placed …


Characterization Of Suspension Polymerized Polyacrylamide And Poly(Sodium Acrylate-Acrylamide) Copolymer And Their Size Influence On The Properties Of Concrete, Cole R. Davis, Kendra A. Erk, Stacey L. Kelly Aug 2016

Characterization Of Suspension Polymerized Polyacrylamide And Poly(Sodium Acrylate-Acrylamide) Copolymer And Their Size Influence On The Properties Of Concrete, Cole R. Davis, Kendra A. Erk, Stacey L. Kelly

The Summer Undergraduate Research Fellowship (SURF) Symposium

Shrinkage leading to cracking and mechanical instability is a major problem for concrete due to the loss of water during the curing process. However, through the addition of Superabsorbent Polymer (SAP) hydrogels, shrinkage can be prevented, increasing the strength of concrete. Characterization of suspension polymerized polyacrylamide (PAM) poly(sodium acrylate-polyacrylamide) (PANa-PAM) copolymer microsphere sizes, morphology and swelling behavior was conducted before adding them to concrete. Size was determined using microscopy paired with ImageJ analysis. Coulter Counter size characterization was also used to determine the particle size distribution. Swelling behavior was determined using the tea bag method as well as size analysis …


Computer Modeling Of Graphene Field Effect Transistors, Drew M. Ryan, Robert S. Bean Aug 2016

Computer Modeling Of Graphene Field Effect Transistors, Drew M. Ryan, Robert S. Bean

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene has been the centerpiece of numerous research projects since its discovery in 2004, greatly due to its multitude of unique properties. Its variable conductivity, relative strength, and electron mobility make graphene a prime candidate for applications in the field of radiation detection. While work has been performed in the past on testing radiation detection using graphene using Graphene Field Effect Transistors (GFET), due to its limited size, fabricating GFETs can be tedious and costly. Therefore, a need arose for a way to test potential GFET designs without the cost and limitations of fabricating GFETs for each test iteration. Using …


Experimental Study Of Breakage Of Particles Under Compression, Haoze Zhou, Niranjan Parab, Weinong W. Chen Aug 2016

Experimental Study Of Breakage Of Particles Under Compression, Haoze Zhou, Niranjan Parab, Weinong W. Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Granular materials are used widely and can be seen in natural and industrial applications such as sand bags or pharmaceutical pills. During their manufacturing, processing, transport and use, granular materials are subjected to various kinds of loadings. If the amplitude of the loading is above the strength threshold, particles constituting granular materials may fracture. It is very important to understand the failure of particles under these loading conditions to prevent or control their failure during all stages of their manufacturing and use. Better characterization of the fracture behavior of particles composed of different materials and sizes will allow more precise …


Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner Aug 2016

Cold Atmospheric Pressure Plasmas For Food Applications, Michael V. Lauria, Russell S. Brayfield Ii, Ronald G. Johnson, Allen L. Garner

The Summer Undergraduate Research Fellowship (SURF) Symposium

Successfully distributing shelf food requires treatment to eliminate microorganisms. Current chemical methods, such as chlorine wash, can alter food quality while only being effective for a limited time. Cold atmospheric pressure plasmas (CAPs) can eradicate the microorganisms responsible for food spoilage and foodborne illness. Optimizing CAP treatments requires understanding the reactive species generated and relating them to eradication efficiency. Recent studies have used optical emission spectroscopy (OES) to determine the species generated in a sealed package that would hold food. In this study,we supplement the OES results with optical absorption spectroscopy (OAS) using the same gases (helium, nitrogen, compressed air, …


Lysis And Amplifciation Of Neonatal Sepsis Causing Pathogens, Gregory Berglund, Elizabeth A. Phillips, Jacqueline C. Linnes Aug 2016

Lysis And Amplifciation Of Neonatal Sepsis Causing Pathogens, Gregory Berglund, Elizabeth A. Phillips, Jacqueline C. Linnes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Neonatal sepsis, resulting from a bloodstream infection within the first few weeks of life, is the leading cause of newborn deaths worldwide. The gold standard of neonatal sepsis diagnosis requires a blood culture to identify the infecting bacteria, however require days of incubation, expensive equipment, and expertise. Any delay in diagnosis is critical, as the condition can be treated easily if appropriate antibiotics are administered promptly. A low-cost, rapid, and sensitive diagnostic test would enable more timely treatment and lead to better patient outcomes with fewer required resources. Point-of-care, nucleic acid amplification assays are a promising alternative to blood culture …


Measurement Of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array, Hannah R. Kriscovich, Sarah M. Libring, Siddarth V. Sridharan, James K. Nolan, Jose F. Rivera, Jenna L. Rickus, David B. Janes Aug 2016

Measurement Of Hydrogen Peroxide Influx Into Cells: Preparation For Measurement Using On-Chip Microelectrode Array, Hannah R. Kriscovich, Sarah M. Libring, Siddarth V. Sridharan, James K. Nolan, Jose F. Rivera, Jenna L. Rickus, David B. Janes

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrogen peroxide (H2O2) is commonly known as a toxic reactive oxidative species (ROS) for cells. Recent studies have found evidence that H2O2 is also an important cellular signalling molecule. Quantifying cellular influx of H2O2 will contribute to researchers’ understanding of the role H2O2 plays in healthy cells and cells involved in the progression of cancers and degenerative diseases. This work utilizes an assay kit and fluorescence techniques to evaluate cell lines and conditions to create a model biological system for measuring cellular H2O2 consumption. …


Temperature Dependent Surface Modification Of Tungsten Exposed To High-Flux Low-Energy Helium Ion Irradiation, Antony Q. Damico, Jitendra K. Tripathi, Theodore J. Novakowski, Gennady Miloshevsky, Ahmed Hassanein Aug 2016

Temperature Dependent Surface Modification Of Tungsten Exposed To High-Flux Low-Energy Helium Ion Irradiation, Antony Q. Damico, Jitendra K. Tripathi, Theodore J. Novakowski, Gennady Miloshevsky, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nuclear fusion is a great potential energy source that can provide a relatively safe and clean limitless supply of energy using hydrogen isotopes as fuel material. ITER (international thermonuclear experimental reactor) is the world first fusion reactor currently being built in France. Tungsten (W) is a prime candidate material as plasma facing component (PFC) due to its excellent mechanical properties, high melting point, and low erosion rate. However, W undergoes a severe surface morphology change when exposed to helium ion (He+) bombardment under fusion conditions. It forms nanoscopic fiber-form structures, i.e., fuzz on the surface. Fuzz is brittle …


Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum Aug 2016

Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lower back pain from intervertebral disc injury affects around 84% of the population at some point in their life, which at its worst may cause total immobilization. This pain can only be temporarily relieved by spinal fusion or intervertebral disc replacement; however, both of these cause loss of natural motion in patients by removing damaged fibrocartilage discs. While these techniques help mitigate pain briefly, no permanent solution exists currently to both relieve pain and preserve natural motion. My work may be a solution by eventually providing patient-specific implants that resemble native tissue in the regeneration process that could be absorbed …


Experimental Testing And Validation Of P-Band Bi-Static Remote Sensing Of Soil Moisture In 137-138mhz Range, Xiangyu Qu, Yao-Cheng Lin, James L. Garrison Aug 2016

Experimental Testing And Validation Of P-Band Bi-Static Remote Sensing Of Soil Moisture In 137-138mhz Range, Xiangyu Qu, Yao-Cheng Lin, James L. Garrison

The Summer Undergraduate Research Fellowship (SURF) Symposium

Remote sensing using readily available communication signal transmitted by ORBCOMM satellites at very high frequency (VHF) range (137-138MHz) is a promising method for detecting the root zone soil moisture content. The radio wave reflectivity of soil is strongly correlated to soil moisture content. Therefore, if we were able to measure the reflectivity, we might be able to estimate the soil moisture content. In this preliminary study, we analyze direct signal data from the satellites to investigate and verify communication channels in frequency range of interest and their characteristics (bandwidth, pattern, etc.). The analysis of direct signal data is also used …


Exploring Regional And Telecoupled Land Use Change Impacts From Environmental Shocks, Kevin Hill, Liz Wachs, Brady Hardiman, David Yu, Shweta Singh Aug 2016

Exploring Regional And Telecoupled Land Use Change Impacts From Environmental Shocks, Kevin Hill, Liz Wachs, Brady Hardiman, David Yu, Shweta Singh

The Summer Undergraduate Research Fellowship (SURF) Symposium

Natural disasters or environmental shocks have the potential to disrupt local agricultural systems as well as distant agricultural systems through cascading effects. In this work we selected two distinct environmental shocks and traced their cascading effects on land use change. Quantifying cascading effects is a salient issue because climate change forecasts indicate an increase in frequency and intensity of global environmental shocks. This study incorporated the concept of telecoupled systems involving interrelating ecological, economic and political/social components. A telecoupled framework involving cascading effects was implemented using three approaches. The first approach involved using bilateral agricultural trade matrix data to analyze …


Development Of Standard Criteria To Evaluate The Effectiveness Of Helmets At Decreasing The Risk Of Concussions, Daniel Y. Shyu, Goutham N. Sankaran, Kevin G. Mciver, Nicolas Leiva, Eric A. Nauman Aug 2016

Development Of Standard Criteria To Evaluate The Effectiveness Of Helmets At Decreasing The Risk Of Concussions, Daniel Y. Shyu, Goutham N. Sankaran, Kevin G. Mciver, Nicolas Leiva, Eric A. Nauman

The Summer Undergraduate Research Fellowship (SURF) Symposium

In many sports, such as American football, accumulations of mild traumatic brain injuries have been suggested as a possible link to neurodegeneration and future mental disorders. With head impacts occurring at all levels of competition and in different sports, it is critical to develop an accurate method for quantifying the effects of head impacts and determining the efficacy of helmets. This study examines the derivation of different dimensionless numbers and ascertains the critical factors needed to predict the effects of head impacts, specifically the resulting accelerations from an impact. Given a known force of impact, parameters such as peak translation …


Ball Pressure Correlations With Peak Impact Force And The Potential For Cumulative Mtbi When Heading A Soccer Ball, Nicolas Leiva, Daniel Y. Shyu, Josh Auger, Eric Nauman Aug 2016

Ball Pressure Correlations With Peak Impact Force And The Potential For Cumulative Mtbi When Heading A Soccer Ball, Nicolas Leiva, Daniel Y. Shyu, Josh Auger, Eric Nauman

The Summer Undergraduate Research Fellowship (SURF) Symposium

Soccer is a unique sport in which athletes use their heads as tools for gameplay, which may ultimately cause cumulative traumatic brain injuries. Due to rising popularity of soccer in the United States alongside the increased occurrence of CTE and mTBI in other contact sports, there is a growing concern over how to keep the repetitive forces caused by heading, as low as possible. Different variables that can affect the peak force felt when heading a soccer ball can be simulated and compared with in-game data, however, this has never been properly tested before. In the present study two size …


High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen Aug 2016

High Strain Rate Experiments Of Energetic Material Binder, Roberto Rangel Mendoza, Michael Harr, Weinong Chen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Energetic materials, in particular HMX, is widely used in many applications as polymer bonded explosives (PBX) and rocket propellant. However, when damaged, HMX is known to be an unstable substance which renders it a hazardous material and in some cases unreliable. Finding critical mechanical conditions at high rates that render various forms of energetic materials as unreliable would be vital to understand the effects that vibrations and compression forces have on energetic materials. A better understanding would enable the ability to develop improvements in the manufacturing of PBX and rocker propellant. The method utilized to evaluate the mechanical properties of …


Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher Aug 2016

Modeling Of A Roll-To-Roll Plasma Cvd System For Graphene, Yudong Chen, Majed A. Alrefae, Anurag Kumar, Timothy S. Fisher

The Summer Undergraduate Research Fellowship (SURF) Symposium

Graphene is a 2D carbon material that has extraordinary physical properties relevant to many industrial applications such as electronics, oxidation barrier and biosensors. Roll-to-roll plasma chemical vapor deposition (CVD) has been developed to manufacture graphene at large scale. In a plasma CVD chamber, graphene is grown on a copper foil as it passes through a high-temperature plasma region. The temperatures of the gas and the copper foil play important roles in the growth of graphene. Consequently, there is a need to understand the temperature and gas velocity distributions in the system. The heat generated in the plasma creates a thermal …