Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

University of Tennessee, Knoxville

2021

Discipline
Keyword
Publication
Publication Type
File Type

Articles 91 - 120 of 150

Full-Text Articles in Engineering

Libowski: A Numerical Framework For Solving Depletion And Mass Transport In Molten Salt Reactors, Robert Z. Taylor May 2021

Libowski: A Numerical Framework For Solving Depletion And Mass Transport In Molten Salt Reactors, Robert Z. Taylor

Doctoral Dissertations

Molten salt reactors (MSRs) are a class of next-generation liquid fueled nuclear reactor which show great promise and industrial interest. With this type of reactor comes great difficulty in many modeling and simulation aspects which are required for design, operational efficiency and regulatory licensing. Solving the set of coupled depletion and mass transport equations required for modeling and simulations of these reactors is of great interest. This manuscript discusses the formulation of a numerical framework for solving the complex set of depletion and mass transport problems in MSRs. This is accomplished by first defining the set of equations that must …


Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith May 2021

Microstructural Investigation Of Hydride Reorientation In Zirconium Based Spent Nuclear Fuel Cladding, Tyler S. Smith

Doctoral Dissertations

Hydride embrittlement and the impact of hydride reorientation are failure phenomena of particular interest during the transportation process of spent nuclear fuel from wet storage to dry storage. This process exposes the cladding to elevated temperatures and high pressure-induced hoop stresses that can release the hydride platelets back into solution and cause them to radially precipitate upon cooling. Though the impact of high temperature and high-pressure conditions on hydride reorientation have been investigated for many nonirradiated specimens, a data gap remains for the coupling effects of irradiation at these conditions in high burnup spent nuclear fuel rods. To simulate this …


Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby May 2021

Biofabricated Constructs Of Carbon-Based Nanoparticles With Mesenchymal Stem Cells For Orthopedic Repair, Steven D. Newby

Doctoral Dissertations

Breakthroughs in tissue engineering are moving at a rapid rate especially in the regenerative bone biofabrication. Technology growth in the field of additive manufacturing (AM) such 3D bioprinting which provides the ability to create biocompatible 3D construct on which a cell source could be seeded is an encouraging substitute to autologous grafts.

This present research aims to biofabricate a construct for bone tissue engineering using AM technology. The biocompatible material was chosen corresponding to bones extracellular matrix (ECM) composition, which demonstrates an inorganic and organic development phase: Poly (lactic-glycolic acid) was chosen as the polymeric matrix of the compound, due …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo May 2021

Engineering Modularity Of Ester Biosynthesis Across Biological Scales, Hyeongmin Seo

Doctoral Dissertations

Metabolic engineering and synthetic biology enable controlled manipulation of whole-cell biocatalysts to produce valuable chemicals from renewable feedstocks in a rapid and efficient manner, helping reduce our reliance on the conventional petroleum-based chemical synthesis. However, strain engineering process is costly and time-consuming that developing economically competitive bioprocess at industrial scale is still challenging. To accelerate the strain engineering process, modular cell engineering has been proposed as an innovative approach that harnesses modularity of metabolism for designing microbial cell factories. It is important to understand biological modularity and to develop design principles for effective implementation of modular cell engineering. In this …


Next Generation Energy Storage: An Examination Of Lignin-Based Carbon Composite Anodes For Sodium Ion Batteries Through Modeling And Simulation, Dayton G. Kizzire May 2021

Next Generation Energy Storage: An Examination Of Lignin-Based Carbon Composite Anodes For Sodium Ion Batteries Through Modeling And Simulation, Dayton G. Kizzire

Doctoral Dissertations

The current energy market relies heavily on fossil fuel sources; however, we are amidst a momentous shift towards wind, solar, and water based renewable energies. Large-scale energy storage allows renewable energy to be stored and supply the grid with consistent energy despite changing weather conditions. Improvements to large-scale energy storage in terms of cost, safety, and sustainability are crucial to wide-scale adoption. A promising candidate for large-scale energy storage are sodium-ion batteries using hard carbon anodes. Sodium is globally available, cheaper, and more sustainable than lithium, but requires a different anode structure. A sustainable hard carbon anode with excellent Li-ion …


Towards Secure Deep Neural Networks For Cyber-Physical Systems, Jiangnan Li May 2021

Towards Secure Deep Neural Networks For Cyber-Physical Systems, Jiangnan Li

Doctoral Dissertations

In recent years, deep neural networks (DNNs) are increasingly investigated in the literature to be employed in cyber-physical systems (CPSs). DNNs own inherent advantages in complex pattern identifying and achieve state-of-the-art performances in many important CPS applications. However, DNN-based systems usually require large datasets for model training, which introduces new data management issues. Meanwhile, research in the computer vision domain demonstrated that the DNNs are highly vulnerable to adversarial examples. Therefore, the security risks of employing DNNs in CPSs applications are of concern.

In this dissertation, we study the security of employing DNNs in CPSs from both the data domain …


Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat May 2021

Process-Structure-Property Relationships In 3d-Printed Epoxy Composites Produced Via Material Extrusion Additive Manufacturing, Nadim S. Hmeidat

Doctoral Dissertations

Extrusion-based additive manufacturing (AM) technologies, such as direct ink writing (DIW), offer unique opportunities to create composite materials and novel multi-material architectures that are not feasible using other AM technologies. DIW is a novel 3D-printing approach in which viscoelastic inks, with favorable rheological properties, are extruded through fine nozzles and patterned in a filament form at room temperature.

Recent developments in DIW of polymer composites have led to expanding the range of materials used for printing, as well as introducing novel deposition strategies to control filler orientation and create improved functional/structural composite materials. Despite these substantial advancements, the successful and …


Utility Scale Building Energy Modeling And Climate Impacts, Brett C. Bass May 2021

Utility Scale Building Energy Modeling And Climate Impacts, Brett C. Bass

Doctoral Dissertations

Energy consumption is steadily increasing year over year in the United States (US). Climate change and anthropogenically forced shifts in weather have a significant impact on energy use as well as the resilience of the built environment and the electric grid. With buildings accounting for about 40% of total energy use in the US, building energy modeling (BEM) at a large scale is critical. This work advances that effort in a number of ways. First, current BEM approaches, their ability to scale to large geographical areas, and global climate models are reviewed. Next, a methodology for large-scale BEM is illustrated, …


Neutron And Photon Imaging Capabilities Of Bismuth-Loaded Plastic, Andrew W. Decker May 2021

Neutron And Photon Imaging Capabilities Of Bismuth-Loaded Plastic, Andrew W. Decker

Doctoral Dissertations

Plastic scintillators utilizing iridium complex fluorophores offer substantial improvements in light yield, and their light yield is not significantly quenched in compositions with bismuth metalorganic loading at 21% weight. These advances may resolve significant capability gaps for low-cost, portable, and durable dual-particle imaging (DPI) systems for nuclear safety, security, and safeguard purposes. However, all candidate materials should first undergo investigation utilizing industry standards to quantify and evaluate their capabilities. As such, a 21% bismuth-loaded polyvinyl toluene (BiPVT) scintillator fabricated by Lawrence Livermore National Laboratory (LLNL) is computationally and experimentally evaluated as a small, pixelated radiographic array, with individual pixel dimensions …


An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch May 2021

An Analysis Of Modern Password Manager Security And Usage On Desktop And Mobile Devices, Timothy Oesch

Doctoral Dissertations

Security experts recommend password managers to help users generate, store, and enter strong, unique passwords. Prior research confirms that managers do help users move towards these objectives, but it also identified usability and security issues that had the potential to leak user data or prevent users from making full use of their manager. In this dissertation, I set out to measure to what extent modern managers have addressed these security issues on both desktop and mobile environments. Additionally, I have interviewed individuals to understand their password management behavior.

I begin my analysis by conducting the first security evaluation of the …


Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor May 2021

Susceptibility Of Riverine Fishes To Anthropogenically-Linked Trauma: Strikes From Hydropower Turbine Blades, Ryan K. Saylor

Doctoral Dissertations

Hydropower accounts for nearly 40% of renewable electricity generation in the US; however, dams significantly impact the surrounding aquatic ecosystems. One of the most visible impacts of hydropower―beyond the dam itself―is the direct negative impacts (injury or death) to fish populations that must pass through hydropower turbines to access desired downstream habitat. During passage, fishes face many potential stressors that can cause severe injuries and often leads to high rates of mortality. In this dissertation, I have focused on quantifying how fishes respond to impacts from turbine blades that may occur during turbine passage. Laboratory research into blade strike impact …


Optically Active Rare-Earth Doped Films Synthesized By Pulsed Laser Deposition For Biomedical Applications, Charles William Bond May 2021

Optically Active Rare-Earth Doped Films Synthesized By Pulsed Laser Deposition For Biomedical Applications, Charles William Bond

Doctoral Dissertations

Optically active materials are used in many biomedical applications ranging from medical imaging to light therapies. Investigating the effects of differing nanostructure configurations on the optical performance of these materials can improve tunability, efficiency, and practicality for their respective applications. This work utilizes pulsed laser deposition (PLD) to develop nanostructured thin films and determines their optical performance for applications in computed radiography for medical imaging and in LEDs which can be used in biomedical applications such as photobiomodulation.

In computed radiography, scattering of the stimulation light by the storage phosphor crystal grain boundaries in imaging plates negatively impacts spatial resolution. …


Models, Theoretical Properties, And Solution Approaches For Stochastic Programming With Endogenous Uncertainty, Tanveer Hossain Bhuiyan May 2021

Models, Theoretical Properties, And Solution Approaches For Stochastic Programming With Endogenous Uncertainty, Tanveer Hossain Bhuiyan

Doctoral Dissertations

In a typical optimization problem, uncertainty does not depend on the decisions being made in the optimization routine. But, in many application areas, decisions affect underlying uncertainty (endogenous uncertainty), either altering the probability distributions or the timing at which the uncertainty is resolved. Stochastic programming is a widely used method in optimization under uncertainty. Though plenty of research exists on stochastic programming where decisions affect the timing at which uncertainty is resolved, much less work has been done on stochastic programming where decisions alter probability distributions of uncertain parameters. Therefore, we propose methodologies for the latter category of optimization under …


Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova May 2021

Stretching The Applications Of Biomass: Development Of Lignin Based Thermoplastic Elastomers And Composite Materials, Anthony Stephen Bova

Doctoral Dissertations

Bio-based plastics and composites have seen increased industry adoption in recent years due to growing demand for materials with a low carbon footprint. The use of lignin as a feedstock for polymers has seen growing interest as the concept of an integrated cellulosic biorefinery gains traction and advances the need to use all components of separated biomass for value-added applications. Historically, use of lignin in thermoplastic and elastomeric copolymers and blends has been bottlenecked by the inability to introduce lignin content above 30 weight percent due to difficulties with interfacial adhesion of lignin with other soft segments. Efforts to overcome …


Displacement-Based Dynamometer For Milling Force Measurement, Michael F. Gomez May 2021

Displacement-Based Dynamometer For Milling Force Measurement, Michael F. Gomez

Doctoral Dissertations

This project will study the design and testing of a low-cost dynamometer for milling dynamic force measurement. The monolithic design is based on constrained-motion/flexure-based kinematics, where force is inferred from displacement measured using a low-cost optical interrupter (i.e., a knife edge that partially interrupts the light beam in an emitter-detector pair). The time-dependent displacement of the dynamometer’s moving platform caused by the milling force is converted to the frequency domain, multiplied by the inverse of the dynamometer’s ideally single degree of freedom (SDOF) frequency response function (FRF), and converted back into the time-domain to obtain the time-dependent cutting force. The …


Multiphysics Design And Sensitivity Analysis Of Nuclear Heated Critical Heat Flux Pool Boiling Test Devices In Treat., Richard Hernandez May 2021

Multiphysics Design And Sensitivity Analysis Of Nuclear Heated Critical Heat Flux Pool Boiling Test Devices In Treat., Richard Hernandez

Doctoral Dissertations

Following the events of the 2011 Fukushima Daiichi accident, there has been a drive to develop accident tolerant fuels (ATF) capable of enhancing safety margins provided by conventional light water reactor (LWR) materials, with a focus on the critical heat flux (CHF) behavior under fast transient heating irradiation conditions. Presented in this dissertation, is the modeling scope of a current effort aimed at elucidating the mechanisms of CHF under in-pile fast transient irradiation conditions using the Transient Reactor Test (TREAT) facility. A heater rodlet made from stainless steel type-304 with tailored natural boron content was held within experimental pool boiling …


Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee May 2021

Characterization Of Near Isothermal Compression And Expansion For Energy Storage, Saiid Kassaee

Doctoral Dissertations

As the global share of electricity generation from intermittent renewable energy sources increases, developing efficient and scalable electricity storage technologies becomes critical to modernizing the grid, matching the supply and demand, and raising the capacity factor of renewable generation. The Ground-Level Integrated Diverse Energy Storage (GLIDES) is an efficient energy storage technology invented at Oak Ridge National Laboratory (ORNL). GLIDES stores energy by compressing gas using a liquid piston in pressure vessels benefiting from employing hydraulic turbomachinery which are more efficient than gas turbomachinery. Therefore, GLIDES has higher round-trip efficiency (RTE) than Compressed Air Energy Storage (CAES). Since GLIDES employs …


Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan May 2021

Human Fatigue Predictions In Complex Aviation Crew Operational Impact Conditions, Suresh Rangan

Doctoral Dissertations

In this last decade, several regulatory frameworks across the world in all modes of transportation had brought fatigue and its risk management in operations to the forefront. Of all transportation modes air travel has been the safest means of transportation. Still as part of continuous improvement efforts, regulators are insisting the operators to adopt strong fatigue science and its foundational principles to reinforce safety risk assessment and management. Fatigue risk management is a data driven system that finds a realistic balance between safety and productivity in an organization. This work discusses the effects of mathematical modeling of fatigue and its …


Optimization Of Dynamic Simulations To Identify Movement Patterns That Simultaneously Reduce The Risk Of Injury And Enhance Human Performance, Dhruv Gupta May 2021

Optimization Of Dynamic Simulations To Identify Movement Patterns That Simultaneously Reduce The Risk Of Injury And Enhance Human Performance, Dhruv Gupta

Doctoral Dissertations

Every movement, whether routine or sporting, achieves certain goals. Routine movements like walking takes us from one place to the other and sporting movements like hitting a volleyball help win the game. But each motion puts strain on certain joints of the body putting them at risk of injury. Walking can lead to chronic disorders like knee osteoarthritis over the years. Hitting a volleyball can put the shoulder at risk of a rotator cuff injury. The purpose of this work is to find optimal movement patterns that enhance human ability to achieve the goals of the movement, but at the …


Unraveling The Effects Of Molecular Confinement On The Dynamics Of Polymeric Systems: I. Block Copolymer Architecture Ii. Silica Nanopores, Thomas P. Kinsey May 2021

Unraveling The Effects Of Molecular Confinement On The Dynamics Of Polymeric Systems: I. Block Copolymer Architecture Ii. Silica Nanopores, Thomas P. Kinsey

Doctoral Dissertations

In this dissertation, broadband dielectric spectroscopy (BDS) is employed as an experimental tool to probe dipolar relaxations in polymeric systems under two types of molecular confinement. First a series of miktoarm star copolymers are used to explore how branching block copolymer architectures constrain polymer relaxations within self-assembled domains in relation to linear systems. Secondly, the effects of hard spatial confinement on the dynamics of polymer chains and of ions in polymerized ionic liquids (PILs) are studied after infiltration into silica nanochannels. Complementary techniques such as transmission electron microscopy, small angle x-ray scattering, and Raman spectroscopy are used to determine various …


Microscopic And Image Processing Characterization Of Aggregates To Predict Asr Expansion Potential Of Concrete, Ammar Elfatih Abdelssamd Elhassan May 2021

Microscopic And Image Processing Characterization Of Aggregates To Predict Asr Expansion Potential Of Concrete, Ammar Elfatih Abdelssamd Elhassan

Doctoral Dissertations

Preventing ASR occurrence in new concrete structures requires reliable and quick methods to identify reactive aggregates and to evaluate proper mitigation alternatives. The current accelerated mortar-bar expansion tests (ASTM C 1260 or ASTM C1567) and the concrete prism expansion test (ASTM C 1293) have been reported to have several limitations. Assessment of the extend of ASR damage in existing affected structures requires more understanding on how ASR expansion and damage develop in field conditions such as under confinements and under relatively slow rate of ASR reaction.

The significance of ASR expansion rate and bi-axial restrain on concrete degradation has been …


The Performance Impacts Of Real-Time Control On Bioretention, Padmini P. Persaud May 2021

The Performance Impacts Of Real-Time Control On Bioretention, Padmini P. Persaud

Doctoral Dissertations

Bioretention is a green infrastructure practice used to restore natural hydrologic regimes and improve stormwater quality. Extreme weather combined with demands for treatment of a growing number of priority pollutants has put a strain on these systems, making meeting performance goals difficult. The addition of smart stormwater technology has the potential to help address these issues as more control is provided to modify internal conditions and optimize sometimes conflicting outcomes. The use of real-time control is tested in this research to determine how bioretention performance is impacted by this technology. Column studies incorporating forecasts and historic rainfall were used to …


Machine Learning With Topological Data Analysis, Ephraim Robert Love May 2021

Machine Learning With Topological Data Analysis, Ephraim Robert Love

Doctoral Dissertations

Topological Data Analysis (TDA) is a relatively new focus in the fields of statistics and machine learning. Methods of exploiting the geometry of data, such as clustering, have proven theoretically and empirically invaluable. TDA provides a general framework within which to study topological invariants (shapes) of data, which are more robust to noise and can recover information on higher dimensional features than immediately apparent in the data. A common tool for conducting TDA is persistence homology, which measures the significance of these invariants. Persistence homology has prominent realizations in methods of data visualization, statistics and machine learning. Extending ML with …


Synthesis And Physical Properties Of High Entropy Oxide Ceramics, Brianna L. Musicó May 2021

Synthesis And Physical Properties Of High Entropy Oxide Ceramics, Brianna L. Musicó

Doctoral Dissertations

Utilizing entropy as the driving force for stabilizing oxide materials offers a path for the discovery of innovative compounds with unique structure-property relations. The multi-cation approach inherent to high entropy oxides (HEOs) is expected to allow for the tailoring of physical properties that meet the requirements of potential applications. However, the intrinsic disorder and highly localized chemical environments of HEOs bring along new challenges. In order to shed light on the complexities associated multi-cation oxides, we have initiated a systematic study of polycrystalline HEO samples across multiple crystal systems. This work expands the multi-component concept to new compositions and crystal …


Grid-Forming Converter Control Method To Improve Dc-Link Stability In Inverter-Based Ac Grids, Ishita Ray May 2021

Grid-Forming Converter Control Method To Improve Dc-Link Stability In Inverter-Based Ac Grids, Ishita Ray

Doctoral Dissertations

As renewable energy sources with power-electronic interfaces become functionally and economically viable alternatives to bulk synchronous generators, it becomes vital to understand the behavior of these inverter-interfaced sources in ac grids devoid of any synchronous generation, i.e. inverter-based grids. In these types of grids, the inverters need to operate in parallel in grid-forming mode to regulate and synchronize their output voltage while also delivering the power required by the loads. It is common practice, therefore, to mimic the parallel operation control of the very synchronous generators that these inverter-based sources are meant to replace. This practice, however, is based on …


Quantifying Tree Canopy Contributions To Stormwater Runoff Reductions In Urban Watersheds Of The Southeastern United States, Matthew C. Howard May 2021

Quantifying Tree Canopy Contributions To Stormwater Runoff Reductions In Urban Watersheds Of The Southeastern United States, Matthew C. Howard

Masters Theses

Urban stormwater is a major contributor to surface water degradation in the United States, prompting cities to invest in ways to naturally capture, store, and slowly release runoff through “Green Infrastructure” (GI). One often overlooked potential contributors to stormwater management are urban trees, an integral part of a given city’s GI. Interception is of particular interest and describes a tree’s ability to capture and store rainfall, reducing the volume of stormwater that can degrade urban streams during storm events. While rainfall interception for full canopy, forested environments is well studied, limited research is available that characterizes the interception of open-grown …


A Communications Testbed For Testing Power Electronic Agent Systems, Benjamin R. Dean May 2021

A Communications Testbed For Testing Power Electronic Agent Systems, Benjamin R. Dean

Masters Theses

As power electronic system (PES) continue to incorporate complex intra-system communication, understanding and characterizing this communication has become a complex task. Knowing how a system’s communication will behave is vital to ensuring proper operation of these systems. This thesis proposes and outlines a communication testbed that streamlines the development and testing of the communications between the components of PES, and further presents the characterization of communication protocol utilized in these multi-agent PESs. These communication protocols include MQTT, Modbus, or User Datagram Protocol (UDP). Understanding the different behavior of these protocols presents is paramount for the design of PESs.


Bioretention Cell Performance Under Shifting Precipitation Patterns Across The Contiguous United States, Matthew Weathers May 2021

Bioretention Cell Performance Under Shifting Precipitation Patterns Across The Contiguous United States, Matthew Weathers

Masters Theses

As climate change produces shifts in precipitation patterns, communities will need to understand how the performance of green stormwater infrastructure (GSI) may be impacted. Bioretention cells are one of the most commonly implemented forms of GSI for their ability to reduce peak discharge and filter pollutants and are a vulnerable component of stormwater infrastructure. Projections in future climate indicate that bioretention cells may be at risk of losing their existing function due to deviations in precipitation frequency and intensity. General circulation models (GCMs) downscaled to regional climate models (RCMs) can provide climate change projections at a high spatial resolution but …


A Secure Architecture For Defense Against Return Address Corruption, Grayson J. Bruner May 2021

A Secure Architecture For Defense Against Return Address Corruption, Grayson J. Bruner

Masters Theses

The advent of the Internet of Things has brought about a staggering level of inter-connectivity between common devices used every day. Unfortunately, security is not a high priority for developers designing these IoT devices. Often times the trade-off of security comes at too high of a cost in other areas, such as performance or power consumption. This is especially prevalent in resource-constrained devices, which make up a large number of IoT devices. However, a lack of security could lead to a cascade of security breaches rippling through connected devices. One of the most common attacks used by hackers is return …