Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Portland State University

Series

2015

Discipline
Keyword
Publication
File Type

Articles 121 - 127 of 127

Full-Text Articles in Engineering

Desiderata For A Big Data Language, David Maier Jan 2015

Desiderata For A Big Data Language, David Maier

Computer Science Faculty Publications and Presentations

Data management and analytics systems for big data have proliferated, including column stores, array databases, graphanalysis environments and linear-algebra packages. This burgeoning of systems has lead to a surfeit of language and APIs. It is time to consider a new framework that can span these systems and simplify the programming and maintenance of Big Data applications. There are two key goals for such a framework:

Portability: It should be relatively easy to move an application or tool developed on one platform to operate against another. As a corollary, back-end data and analytics services should be swappable in a particular …


A Demonstration Of The Bigdawg Polystore System, Aaron J. Elmore, Jennie Duggan, Michael Stonebraker, Magdalena Balazinska, Ugur Cetintemel, Vijay Gadepally, J. Heer, Bill Howe, Jeremy Kepner, Tim Kraska, Samuel Madden, David Maier, Timothy G. Mattson, S. Papadopoulos, J. Parkhurst, Nesime Tatbul, Manasi Vartak, Stan Zdonik Jan 2015

A Demonstration Of The Bigdawg Polystore System, Aaron J. Elmore, Jennie Duggan, Michael Stonebraker, Magdalena Balazinska, Ugur Cetintemel, Vijay Gadepally, J. Heer, Bill Howe, Jeremy Kepner, Tim Kraska, Samuel Madden, David Maier, Timothy G. Mattson, S. Papadopoulos, J. Parkhurst, Nesime Tatbul, Manasi Vartak, Stan Zdonik

Computer Science Faculty Publications and Presentations

This paper presents BigDAWG, a reference implementation of a new architecture for “Big Data” applications. Such applications not only call for large-scale analytics, but also for real-time streaming support, smaller analytics at interactive speeds, data visualization, and cross-storage-system queries. Guided by the principle that “one size does not fit all”, we build on top of a variety of storage engines, each designed for a specialized use case. To illustrate the promise of this approach, we demonstrate its effectiveness on a hospital application using data from an intensive care unit (ICU). This complex application serves the needs of doctors and researchers …


Query From Examples: An Iterative, Data-Driven Approach To Query Construction, Hao Li, Chee-Yong Chan, David Maier Jan 2015

Query From Examples: An Iterative, Data-Driven Approach To Query Construction, Hao Li, Chee-Yong Chan, David Maier

Computer Science Faculty Publications and Presentations

In this paper, we propose a new approach, called Query from Examples (QFE), to help non-expert database users construct SQL queries. Our approach, which is designed for users who might be unfamiliar with SQL, only requires that the user is able to determine whether a given output table is the result of his or her intended query on a given input database. To kick-start the construction of a target query Q, the user first provides a pair of inputs: a sample database D and an output table R which is the result of Q on D. As there will be …


Needed Computations Shortcutting Needed Steps, Sergio Antoy, Jacob Johannsen, Steven Libby Jan 2015

Needed Computations Shortcutting Needed Steps, Sergio Antoy, Jacob Johannsen, Steven Libby

Computer Science Faculty Publications and Presentations

We define a compilation scheme for a constructor-based, strongly-sequential, graph rewriting system which shortcuts some needed steps. The object code is another constructor-based graph rewriting system. This system is normalizing for the original system when using an innermost strategy. Consequently, the object code can be easily implemented by eager functions in a variety of programming languages. We modify this object code in a way that avoids total or partial construction of the contracta of some needed steps of a computation. When computing normal forms in this way, both memory consumption and execution time are reduced compared to ordinary rewriting computations …


S-Store: Streaming Meets Transaction Processing, John Meehan, Nesime Tatbul, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stonebraker, Kristin A. Tufte, Hao Wang Jan 2015

S-Store: Streaming Meets Transaction Processing, John Meehan, Nesime Tatbul, Cansu Aslantas, Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, Andrew Pavlo, Michael Stonebraker, Kristin A. Tufte, Hao Wang

Computer Science Faculty Publications and Presentations

Stream processing addresses the needs of real-time applications. Transaction processing addresses the coordination and safety of short atomic computations. Heretofore, these two modes of operation existed in separate, stove-piped systems. In this work, we attempt to fuse the two computational paradigms in a single system called S-Store. In this way, S-Store can simultaneously accommodate OLTP and streaming applications. We present a simple transaction model for streams that integrates seamlessly with a traditional OLTP system. We chose to build S-Store as an extension of H-Store, an open-source, in-memory, distributed OLTP database system. By implementing S-Store in this way, we can make …


A Theory Of Name Resolution, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth Jan 2015

A Theory Of Name Resolution, Pierre Néron, Andrew Tolmach, Eelco Visser, Guido Wachsmuth

Computer Science Faculty Publications and Presentations

We describe a language-independent theory for name binding and resolution, suitable for programming languages with complex scoping rules including both lexical scoping and modules. We formulate name resolution as a two-stage problem. First a language-independent scope graph is constructed using language-specific rules from an abstract syntax tree. Then references in the scope graph are resolved to corresponding declarations using a language-independent resolution process. We introduce a resolution calculus as a concise, declarative, and language- independent specification of name resolution. We develop a resolution algorithm that is sound and complete with respect to the calculus. Based on the resolution calculus we …


Usage Based Topology For Dcns, Qing Yi, Suresh Singh Jan 2015

Usage Based Topology For Dcns, Qing Yi, Suresh Singh

Computer Science Faculty Publications and Presentations

Many data center network topologies are designed to provide full bisection bandwidth for tens of thousands of servers in order to achieve high network throughput and server agility. However, the utilization rate of DCNs on average is below 10%, which results in a significant waste of network resources and energy. Many researchers propose consolidating network traffic flows to maximize the set of idle network equipment and switching them to low power mode to save energy. In this paper, we propose using skinnier network topologies to meet performance requirements of realistic loads thus saving not only energy but capital cost as …