Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Aerosol Optical Hygroscopicity Measurements During The 2010 Cares Campaign, Dean B. Atkinson, James Gregory Radney, Janel Lum, Katheryn R. Kolesar, Daniel J. Cziczo, Mikhail Pekour, Qi Zhang, Ari Setyan, Alla Zelenyuk, Christopher D. Cappa Apr 2015

Aerosol Optical Hygroscopicity Measurements During The 2010 Cares Campaign, Dean B. Atkinson, James Gregory Radney, Janel Lum, Katheryn R. Kolesar, Daniel J. Cziczo, Mikhail Pekour, Qi Zhang, Ari Setyan, Alla Zelenyuk, Christopher D. Cappa

Chemistry Faculty Publications and Presentations

Measurements of the effect of water uptake on particulate light extinction or scattering made at two locations during the 2010 CARES study around Sacramento, CA are reported. The observed influence of water uptake, characterized through the dimensionless optical hygroscopicity parameter γ, is compared with calculations constrained by observed particle size distributions and size-dependent particle composition. A closure assessment has been carried out that allowed for determination of the average hygroscopic growth factors (GF) at 85% relative humidity and the dimensionless hygroscopicity parameter κ for oxygenated organic aerosol (OA) and for supermicron particles, yielding κ = 0.1–0.15 and 0.9–1.0, respectively. The …


Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti Feb 2015

Identification And Quantification Of Gaseous Organic Compounds Emitted From Biomass Burning Using Two-Dimensional Gas Chromatography–Time-Of-Flight Mass Spectrometry, Lindsay E. Hatch, Wentai Luo, James F. Pankow, Robert J. Yokelson, Chelsea E. Stockwell, Kelley Barsanti

Civil and Environmental Engineering Faculty Publications and Presentations

The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME- 4) and analyzed by two-dimensional gas chromatography– time-of-flight mass spectrometry (GC × GC–ToFMS). The sensitivity and resolving power of GC × GC–ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements for 708 positively or tentatively identified compounds. Estimated …