Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani Jan 2003

Neuro Emission Controller For Minimizing Cyclic Dispersion In Spark Ignition Engines, Pingan He, Jagannathan Sarangapani

Electrical and Computer Engineering Faculty Research & Creative Works

A novel neural network (NN) controller is developed to control spark ignition (SI) engines at extreme lean conditions. The purpose of neurocontroller is to reduce the cyclic dispersion at lean operation even when the engine dynamics are unknown. The stability analysis of the closed-loop control system is given and the boundedness of all signals is ensured. Results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller. The neuro controller can also be extended to minimize engine emissions with high EGR levels, where similar complex cyclic dynamics are observed. Further, the proposed approach can be applied to control …


Output Feedback Force Control For A Parallel Turning Operation, Raghusimha Sudhakara, Robert G. Landers Jan 2003

Output Feedback Force Control For A Parallel Turning Operation, Raghusimha Sudhakara, Robert G. Landers

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Parallel machine tools (i.e., machine tools capable of cutting a part with multiple tools simultaneously but independently) are being utilized more and more to increase operation productivity, decrease setups, and reduce floor space. Process control is the utilization of real-time process sensor information to automatically adjust process parameters (e.g., feed, spindle speed) to increase operation productivity and quality. To date, however, these two technologies have not been combined. This paper describes the design of an output feedback controller for a parallel turning operation that accounts for the inherent nonlinearities in the force process. An analysis of the process equilibriums explains …


A Continually Online Trained Neurocontroller For The Series Branch Control Of The Upfc, Ganesh K. Venayagamoorthy, Radha P. Kalyani Jan 2003

A Continually Online Trained Neurocontroller For The Series Branch Control Of The Upfc, Ganesh K. Venayagamoorthy, Radha P. Kalyani

Electrical and Computer Engineering Faculty Research & Creative Works

The crucial factor affecting the modern power systems today is load flow control. The Unified Power Flow Controller (UPFC) provides an effective means for controlling the power flow and improving the transient stability in a power network. The UPFC has fast complex dynamics and its conventional control is based on a linearized model of the power system. This paper presents the design of a neurocontroller that controls the power flow and regulates voltage along a transmission line. The continually online neurocontroller is used for controlling the series inverter of UPFC. Simulation results carried out in the PSCAD/EMTDC environment are presented …