Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 44 of 44

Full-Text Articles in Engineering

A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor Dec 2014

A Low-Power Approach For Front End Biological Signal Conditioning, Logan Smith Taylor

Masters Theses

In a lab-on-a-chip (LOC) application, the measurement of small analog signals such as local temperature variation often involves detection of very low-level signals in a noisy micro-scale environment. This is true for other biomedical monitoring systems as well. These systems observe various physiological parameters or electrochemical reactions that need to be tracked electrically. For temperature measurement pyroelectric transducers represent an efficient solution in terms of speed, sensitivity, and scale of integration, especially when prompt and accurate temperature monitoring is desired.

The ability to perform laboratory operations on a small scale using miniaturized LOC devices is a promising biosensing technique. The …


Effect Of Clock And Power Gating On Power Distribution Network Noise In 2d And 3d Integrated Circuits, Vinay C. Patil Nov 2014

Effect Of Clock And Power Gating On Power Distribution Network Noise In 2d And 3d Integrated Circuits, Vinay C. Patil

Masters Theses

In this work, power supply noise contribution, at a particular node on the power grid, from clock/power gated blocks is maximized at particular time and the synthetic gating patterns of the blocks that result in the maximum noise is obtained for the interval 0 to target time. We utilize wavelet based analysis as wavelets are a natural way of characterizing the time-frequency behavior of the power grid. The gating patterns for the blocks and the maximum supply noise at the Point of Interest at the specified target time obtained via a Linear Programming (LP) formulation (clock gating) and Genetic Algorithm …


Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta Aug 2014

Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta

Masters Theses

Power amplifiers (PAs) convert energy from DC to high frequencies in all radio and microwave transmitter systems be they wireless base stations, handsets, radars, heaters, and so on. PAs are the dominant consumers of energy in these systems and, therefore, the dominant sources of system cost and inefficiency. Research has focused on efficient solid-state PA circuit topologies and their optimization since the 1960s. The 2000s saw the current-mode class-D (CMCD) topology, potentially suitable for today's wireless communications systems, show promise in the UHF frequency band. This thesis describes the design and testing of a high-efficiency CMCD amplifier with an integrated …


Digital-To-Analog Converter Interface For Computer Assisted Biologically Inspired Systems, Nicholas Conley Poore Aug 2014

Digital-To-Analog Converter Interface For Computer Assisted Biologically Inspired Systems, Nicholas Conley Poore

Masters Theses

In today's integrated circuit technology, system interfaces play an important role of enabling fast, reliable data communications. A key feature of this work is the exploration and development of ultra-low power data converters. Data converters are present in some form in almost all mixed-signal systems; in particular, digital-to-analog converters present the opportunity for digitally controlled analog signal sources. Such signal sources are used in a variety of applications such as neuromorphic systems and analog signal processing. Multi-dimensional systems, such as biologically inspired neuromorphic systems, require vectors of analog signals. To use a microprocessor to control these analog systems, we must …


An On-Chip Transformer-Based Digital Isolator System, Cory Lynn Fandrich Dec 2013

An On-Chip Transformer-Based Digital Isolator System, Cory Lynn Fandrich

Masters Theses

An on-chip transformer-based digital isolator has been designed, fabricated, and tested. This isolation technique is designed to function between a low voltage microcontroller and a potentially high-voltage power control system. The isolator’s isolation capability is determined by two factors, the RMS blocking voltage strength and common-mode transient immunity. The integrated circuit solution is designed in a high-temperature capable SOI process.

The on-chip transformer size is minimized by utilizing high frequency voltage pulses. A small transformer and overall small chip footprint of the design are favorable for integration into a larger system. The isolator is a two chip solution, an isolated …


A Secure Reconfigurable System-On-Programmable-Chip Computer System, William Herbert Collins Aug 2013

A Secure Reconfigurable System-On-Programmable-Chip Computer System, William Herbert Collins

Masters Theses

A System-on-Programmable-Chip (SoPC) architecture is designed to meet two goals: to provide a role-based secure computing environment and to allow for user reconfiguration. To accomplish this, a secure root of trust is derived from a fixed architectural subsystem, known as the Security Controller. It additionally provides a dynamically configurable single point of access between applications developed by users and the objects those applications use. The platform provides a model for secrecy such that physical recovery of any one component in isolation does not compromise the system. Dual-factor authentication is used to verify users. A model is also provided for tamper …


Analog Testing, Characterization, And Low-Order Model Extraction Using Labview Automation, Jeremy Brantley Aug 2012

Analog Testing, Characterization, And Low-Order Model Extraction Using Labview Automation, Jeremy Brantley

Masters Theses

Testing circuits is a hands-on, time intensive process; it is also one of the most important steps in a design cycle. The most well designed circuit is only an academic exercise if it does not work in real life. The time and cost associated with bench level testing pales in comparison to testing for extreme environments. Testing in extreme heat, cold or radiation introduces a large set of challenges that are rarely encountered in standard bench level testing. The two most pronounced problems are the inaccessibility of the devices under test and time constraints, both short and protracted. Due to …


Power Aware Computing On Gpus, Kiran Kumar Kasichayanula May 2012

Power Aware Computing On Gpus, Kiran Kumar Kasichayanula

Masters Theses

Energy and power density concerns in modern processors have led to significant computer architecture research efforts in power-aware and temperature-aware computing. With power dissipation becoming an increasingly vexing problem, power analysis of Graphical Processing Unit (GPU) and its components has become crucial for hardware and software system design. Here, we describe our technique for a coordinated measurement approach that combines real total power measurement and per-component power estimation. To identify power consumption accurately, we introduce the Activity-based Model for GPUs (AMG), from which we identify activity factors and power for microarchitectures on GPUs that will help in analyzing power tradeoffs …


Pvt Compensation For Single-Slope Measurement Systems, Kevin Vun Kiat Tham May 2011

Pvt Compensation For Single-Slope Measurement Systems, Kevin Vun Kiat Tham

Masters Theses

A pulse-width locked loop (PWLL) circuit is reported that compensates for process, voltage, and temperature (PVT) variations of a linear ramp generator within a 12-bit multi-channel Wilkinson (single-slope integrating) Analog-to-Digital (ADC). This PWLL was designed and fabricated in a 0.5-um Silicon Germanium (SiGe) BiCMOS process. The PWLL architecture that is comprised of a phase detector, a charge-pump, and a pulse width modulator (PWM), is discussed along with the design details of the primary blocks. Simulation and silicon measurement data are shown that demonstrate a large improvement in the accuracy of the PVT-compensated ADC over the uncompensated ADC.


Low Power Design Of A 916 Mhz Gilbert Cell Mixer And A Class-A Power Amplifier For Bioluminescent Bioreporter Integrated Circuit Transmitter, Supriya Kilambi May 2011

Low Power Design Of A 916 Mhz Gilbert Cell Mixer And A Class-A Power Amplifier For Bioluminescent Bioreporter Integrated Circuit Transmitter, Supriya Kilambi

Masters Theses

This thesis presents the low power design of a 916MHz Gilbert cell mixer and a Class-A power amplifier for the Bioluminescent Bioreporter Integrated Circuit (BBIC) transmitter.

There has been increased use in the man-made sensors which can operate in environments unsuitable for humans and at locations remote from the observer. One such sensor is the bioluminescent bioreporter integrated circuit (BBIC). Bioluminescent bioreporters are the bacteria that are genetically engineered in order to achieve bioluminescence when in contact with the target substance. The BBIC has bioreporters placed on a single CMOS integrated circuit (IC) that detects the bioluminescence, performs the signal …


Gpu-Based Implementation Of The Variational Path Integral Method, Shanthan Mudhasani May 2011

Gpu-Based Implementation Of The Variational Path Integral Method, Shanthan Mudhasani

Masters Theses

Any system in the world constitutes particles like electrons. To analyze the behaviors of these systems the behavior of these particles must be predicted. The ground state energy of a molecule is the most important information about a molecule and can calculate by solving the Schrodinger equation. But as the number of atoms increase, the number of variable (coordinates of the atom) that the equation represent increases by three times. Due to the large state space and the nonlinear nature of the Schrodinger equation, it is very difficult to solver this equation. Quantum Monte Carlo (QMC) is a very efficient …


Design And Implementation Of A Signal Conditioning Operational Amplifier For A Reflective Object Sensor, Ankit Master Dec 2010

Design And Implementation Of A Signal Conditioning Operational Amplifier For A Reflective Object Sensor, Ankit Master

Masters Theses

Industrial systems often require the acquisition of real-world analog signals for several applications. Various physical phenomena such as displacement, pressure, temperature, light intensity, etc. are measured by sensors, which is a type of transducer, and then converted into a corresponding electrical signal. The electrical signal obtained from the sensor, usually a few tens mV in magnitude, is subsequently conditioned by means of amplification, filtering, range matching, isolation etc., so that the signal can be rendered for further processing and data extraction.

This thesis presents the design and implementation of a general purpose op amp used to condition a reflective object …


An Fpga Based Implementation Of The Exact Stochastic Simulation Algorithm, Phani Bharadwaj Vanguri Dec 2010

An Fpga Based Implementation Of The Exact Stochastic Simulation Algorithm, Phani Bharadwaj Vanguri

Masters Theses

Mathematical and statistical modeling of biological systems is a desired goal for many years. Many biochemical models are often evaluated using a deterministic approach, which uses differential equations to describe the chemical interactions. However, such an approach is inaccurate for small species populations as it neglects the discrete representation of population values, presents the possibility of negative populations, and does not represent the stochastic nature of biochemical systems. The Stochastic Simulation Algorithm (SSA) developed by Gillespie is able to properly account for these inherent noise fluctuations. Due to the stochastic nature of the Monte Carlo simulations, large numbers of simulations …


A Fully Integrated High-Temperature, High-Voltage, Bcd-On-Soi Voltage Regulator, Benjamin Matthew Mccue May 2010

A Fully Integrated High-Temperature, High-Voltage, Bcd-On-Soi Voltage Regulator, Benjamin Matthew Mccue

Masters Theses

Developments in automotive (particularly hybrid electric vehicles), aerospace, and energy production industries over the recent years have led to expanding research interest in integrated circuit (IC) design toward high-temperature applications. A high-voltage, high-temperature SOI process allows for circuit design to expand into these extreme environment applications. Nearly all electronic devices require a reliable supply voltage capable of operating under various input voltages and load currents. These input voltages and load currents can be either DC or time-varying signals. In this work, a stable supply voltage for embedded circuit functions is generated on chip via a voltage regulator circuit producing a …