Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams Nov 2021

Crystal Structure Prediction Of Materials At Extreme Conditions, Ashley S. Williams

USF Tampa Graduate Theses and Dissertations

The prediction of the structure of a crystal given only the constituent elements is one of the greatest challenges in both materials science and computational science alike. If one were to try to predict a novel crystal by brute force, meaning by arranging the atoms in every possible position of the unit cell and optimizing the geometry to find the energy minima of the potential energy surface, the amount of computer resources required to complete the calculation on the timescale of a few years would vastly exceed the currently installed computational capacity of the entire world. Fortunately, several methods have …


Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss Jan 2021

Equations Of State For Warm Dense Carbon From Quantum Espresso, Derek J. Schauss

Theses and Dissertations

Warm dense plasma is the matter that exists, roughly, in the range of 10,000 to 10,000,000 Kelvin and has solid-like densities, typically between 0.1 and 10 grams per centimeter. Warm dense fluids like hydrogen, helium, and carbon are believed to make up the interiors of many planets, white dwarfs, and other stars in our universe. The existence of warm dense matter (WDM) on Earth, however, is very rare, as it can only be created with high-energy sources like a nuclear explosion. In such an event, theoretical and computational models that accurately predict the response of certain materials are thus very …


Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki Oct 2019

Laser-Spark Multicharged Ion Implantation System ‒ Application In Ion Implantation And Neural Deposition Of Carbon In Nickel (111), Oguzhan Balki

Electrical & Computer Engineering Theses & Dissertations

Carbon ions generated by ablation of a carbon target using an Nd:YAG laser pulse (wavelength λ = 1064 nm, pulse width τ = 7 ns, and laser fluence of 10-110 J/cm2) are characterized. Time-of-flight analyzer, a three-mesh retarding field analyzer, and an electrostatic ion energy analyzer are used to study the charge and energy of carbon ions generated by laser ablation. The dependencies of the ion signal on the laser fluence, laser focal point position relative to target surface, and the acceleration voltage are described. Up to C4+ are observed. When no acceleration voltage is applied between …


Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon May 2019

Exploring The Electrical Properties Of Twisted Bilayer Graphene, William Shannon

Senior Theses

Two-dimensional materials exhibit properties unlike anything else seen in conventional substances. Electrons in these materials are confined to move only in the plane. In order to explore the effects of these materials, we have built apparatus and refined procedures with which to create two-dimensional structures. Two-dimensional devices have been made using exfoliated graphene and placed on gold contacts. Their topography has been observed using Atomic Force Microscopy (AFM) confirming samples with monolayer, bilayer, and twisted bilayer structure. Relative work functions of each have been measured using Kelvin Probe Force Microscopy (KPFM) showing that twisted bilayer graphene has a surface potential …


Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse Jan 2019

Electron Transport In One And Two Dimensional Materials, Samuel William Lagasse

Legacy Theses & Dissertations (2009 - 2024)

This dissertation presents theoretical and experimental studies in carbon nanotubes (CNTs), graphene, and van der Waals heterostructures. The first half of the dissertation focuses on cutting edge tight-binding-based quantum transport models which are used to study proton irradiation-induced single-event effects in carbon nanotubes [1], total ionizing dose effects in graphene [2], quantum hall effect in graded graphene p-n junctions [3], and ballistic electron focusing in graphene p-n junctions [4]. In each study, tight-binding models are developed, with heavy emphasis on tying to experimental data. Once benchmarked against experiment, properties of each system which are difficult to access in the laboratory, …


Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji Jan 2019

Charge Storage In Wo³ Polymorphs And Their Application As Supercapacitor Electrode Material, Vaibhav Lokhande, Abhishek Lokhande, Gon Namkoong, Jin Hyeok Kim, Taeksoo Ji

Electrical & Computer Engineering Faculty Publications

Tungsten oxide is a versatile material with different applications. It has many polymorphs with varying performance in energy storage application. We report simple and facile way to synthesize four phases of tungsten oxide from same precursor materials only by changing the pH and temperature values. Monoclinic, hexagonal, orthorhombic and tetragonal phase obtained, were analyzed and tested for supercapacitor application. The electrochemical analysis of four phases indicates that the hexagonal phase is best-suited electrode material for supercapacitor. The hexagonal phase exhibits higher specific capacitance (377.5 Fg-1 at 2 mVs-1), higher surface capacitive contribution (75%), better stability and rate …


Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov Jan 2018

Photoluminescence From Gan Co-Doped With C And Si, Mykhailo Vorobiov

Theses and Dissertations

This thesis devoted to the experimental studies of yellow and blue luminescence (YL and BL relatively) bands in Gallium Nitride samples doped with C and Si. The band BLC was at first observed in the steady-state photoluminescence spectrum under high excitation intensities and discerned from BL1 and BL2 bands appearing in the same region of the spectrum. Using the time-resolved photoluminescence spectrum, we were able to determine the shape of the BLC and its position at 2.87 eV. Internal quantum efficiency of the YL band was estimated to be 90\%. The hole capture coefficient of the BLC …


Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock May 2012

Use Of Ultra High Vacuum Plasma Enhanced Chemical Vapor Deposition For Graphene Fabrication, Shannen Adcock

Graduate Theses and Dissertations

Graphene, what some are terming the "new silicon", has the possibility of revolutionizing technology through nanoscale design processes. Fabrication of graphene for device processing is limited largely by the temperatures used in conventional deposition. High temperatures are detrimental to device design where many different materials may be present. For this reason, graphene synthesis at low temperatures using plasma-enhanced chemical vapor deposition is the subject of much research. In this thesis, a tool for ultra-high vacuum plasma-enhanced chemical vapor deposition (UHV-PECVD) and accompanying subsystems, such as control systems and alarms, are designed and implemented to be used in future graphene growths. …


Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot Jan 2012

Development Of Interatomic Potentials For Large Scale Molecular Dynamics Simulations Of Carbon Materials Under Extreme Conditions, Romain Perriot

USF Tampa Graduate Theses and Dissertations

The goal of this PhD research project is to devise a robust interatomic potential for large scale molecular dynamics simulations of carbon materials under extreme conditions. This screened-environment dependent reactive empirical bond order potential (SED-REBO) is specifically designed to describe carbon materials under extreme compressive or tensile stresses. Based on the original REBO potential by Brenner and co workers, SED-REBO includes reparametrized pairwise interaction terms and a new screening term, which serves the role of a variable cutoff. The SED-REBO potential overcomes the deficiencies found with the most commonly used interatomic potentials for carbon: the appearance of artificial forces due …


Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon Jun 2011

Investigation Of Electrical Transport In Hydrogenated Multiwalled Carbon Nanotubes, Adam Friedman, Hyunkyung Chun, Don Heiman, Yung Jung, Latika Menon

Latika Menon

Highly disordered multiwalled carbon nanotubes of large outer diameter (~60 nm) fabricated by means of chemical vapor deposition process inside porous alumina templates exhibit ferromagnetism when annealed in a H2/Ar atmosphere. In the presence of an applied magnetic field, there is a transition from positive to negative magnetoresistance. The transition may be explained in terms of the Bright model for ordered and disordered carbon structures. Additionally, temperature dependent electrical transport experiments exhibit a zero-bias anomaly at low temperature.