Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics

2017

Supercapacitor

Selected Works

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu Nov 2017

Carbide-Derived Carbon By Electrochemical Etching Of Vanadium Carbides, Luis G.B. Camargo, Benjamin G. Palazzo, Greg Taylor, Zach A. Norris, Yash K. Patel, Jeffrey D. Hettinger, Lei Yu

Jeffrey Hettinger

Carbide-derived Carbon (CDC) has been demonstrated to be an excellent electrode material for electrochemical devices including supercapacitors due to its chemical and electrochemical stability, large specific surface area and controllable pore size and morphology. Currently, CDC is prepared from metal carbides by chlorination in a chlorine gas atmosphere at temperatures of 350°C or higher. In this paper, conversion using electrochemical methods is reported, which can be achieved by oxidizing vanadium carbides (VC or V2C) in aqueous solutions at room temperature and a mild electrode potential to prepare CDC thin film as electrode materials for “on-chip” supercapacitiors. It was found that …


Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan Aug 2017

Cobalt-Doped Ceria/Reduced Graphene Oxide Nanocomposite As An Efficient Oxygen Reduction Reaction Catalyst And Supercapacitor Material, Shaikh Parwaiz, Kousik Bhunia, Ashok Kumar Das, Mohammad Mansoob Khan Dr, Debabrata Pradhan

Dr. Mohammad Mansoob Khan

 Design and development of highly active and durable oxygen reduction reaction (ORR) catalyst to replace Pt- and Pt-based materials are present challenges in fuel cell research including direct methanol fuel cells (DMFC). The methanol crossover and its subsequent oxidation at the cathode is another unwanted issue that reduces the efficiency of DMFC. Herein we report cobalt-doped ceria (Co-CeO2) as a promising electrocatalyst with competent ORR kinetics mainly through a four-electron reduction pathway, and it surpasses Pt/C by a great margin in terms of stability and methanol tolerance. The Co-CeO2 nanoparticles of diameter 4–7 nm were uniformly …