Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

2020

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 102

Full-Text Articles in Engineering

Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic Dec 2020

Bio-Binder—Innovative Asphalt Technology, Amir Tabakovic

Articles

The global road network spans 16.3 million km [1], of which 5 million km is in the EU. These road networks fulfil major economic and social goals by facilitating the movement of goods and people throughout the EU, and are therefore of the utmost importance to the economic and social life of the EU [2]. National governments invest heavily in their road networks, e.g., in 2014, EUR 53.33 billion was invested in the development and maintenance of the EU road network [3]. Each year, the world produces 1.6 trillion tonnes of asphalt [4], of which 218 million tonnes is produced …


Mechanics Of The Solid-State Bonding Under Severe Thermomechanical Processes, Xue Wang Dec 2020

Mechanics Of The Solid-State Bonding Under Severe Thermomechanical Processes, Xue Wang

Doctoral Dissertations

Friction stir welding (FSW) has found increased applications in automotive and aerospace industries due to its advantages of solid-state bonding, no fusion and melting, and versatility in various working conditions and material combinations. The extent and quality of the solid-state bonding between workpieces in FSW is the ultimate outcome of their industrial applications. However, the relationship among processing parameters, material properties, and bonding extent and fidelity remains largely empirical, primarily because of the lack of the mechanistic understanding of (1) tool-workpiece frictional behavior, and (2) bonding formation and evolution.

In this dissertation, to study the underlying mechanism of tool-workpiece frictional …


Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims Dec 2020

Development Of A Novel Casting Alloy Composed Of Aluminum And Cerium With Other Minor Additions, Zachary Cole Sims

Doctoral Dissertations

Eutectic casting alloys of aluminum and cerium are a recent discovery and early research describes an alloy with great potential to meet the growing demand for a lightweight, economical, high specific strength material for use in high-temperature or extremely corrosive environments. The broad application of aluminum alloys across industry sectors is driven by their collection of balanced properties including economical cost, high specific strength, and flexibility of their production pathways. Additionally, their high corrosion resistance makes them a good choice for structural materials. Despite this, the push to use aluminum alloys in ever more extreme environments with higher temperatures, stresses, …


Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell Dec 2020

Adhesion And Deformation Mechanisms Of Polydopamine And Polytetrafluoroethylene: A Multiscale Computational Study, Matthew Brownell

Graduate Theses and Dissertations

Polydopamine (PDA) has been shown to bond via covalent bonding, van der Waals forces, and hydrogen bonding and is known to adhere strongly to almost any material. The application of PDA between a substrate and a PTFE surface coating has resulted in low friction and a greatly reduced wear rate. Previous research probing the capabilities and limitations of PDA/PTFE films have studied the wear and mechanical properties of the film, but the overall adhesive and deformation mechanisms remain unclear.

In this research, we investigate the tribological properties of PDA and PTFE molecules and composites from the atomic to the microscale …


Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo Dec 2020

Leveraging Biomimicry And Additive Manufacturing To Improve Load Transfer In Brittle Materials, Ana Paula Bernardo

Graduate Theses and Dissertations

With the emergence of Additive Manufacturing (i.e., 3D printing) in construction, new strategically designed shapes can be created to improve load transfer through structural members and foundations. Cross-sections can be optimized to carry load using less material, or even using weaker constituent materials, like soils, which are cheap and abundant. The goal of this research is to investigate the benefits of using cellular patterns which leverage biomimicry in civil engineering applications, since nature has perfectly engineered materials and patterns which carry loads with the least amount of material possible. Most of the periodic cellular work to date has focused on …


Comparison Of Additively Manufactured And Wrought 17-4 Ph Stainless Steels In Ultra Low Cycle Fatigue, Timothy Strasser Dec 2020

Comparison Of Additively Manufactured And Wrought 17-4 Ph Stainless Steels In Ultra Low Cycle Fatigue, Timothy Strasser

Graduate Theses and Dissertations

Additive manufacturing (AM) processes allow for creation of complex geometries that are otherwise impractical to fabricate with traditional subtractive methods. AM technology has potential to improve the optimization of seismic lateral force resisting components which dissipate seismic energy through large plastic strains; however, the ultra low-cycle fatigue performance of AM metals are not yet well understood. Void formation during the AM fabrication process has potential to affect performance. This study compares the performance of heat-treated and non-heat-treated AM and wrought 17-4PH stainless steel in Ultra Low Cycle Fatigue. To understand ULCF performance differences between the AM and wrought specimens, post …


Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer Dec 2020

Experimental And Computational Analysis Of Progressive Failure In Bolted Hybrid Composite Joints, John S. Brewer

Theses and Dissertations

Composite materials are strong, lightweight, and stiff making them desirable in aerospace applications. However, a practical issue arises with composites in that they behave unpredictably in bolted joints, where damage and cracks are often initiated. This research investigated a solution to correcting the problem with composite bolted joints. A novel hybrid composite material was developed, where thin stainless steel foils were placed between and in place of preimpregnated composite plies during the cure cycle to reinforce stress concentrations in bolted joints. This novel composite was compared to control samples experimentally in quasi-static monotonic loading in double shear configuration in 9-ply …


Sustainable Drug Release From Polycaprolactone Coated Chitin‑Lignin Gel Fibrous Scaffolds, Turdimuhammad Abdullah, Kalamegam Gauthaman, Azadeh Mostafavi, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Ali Tamayol, Adnan Memic Nov 2020

Sustainable Drug Release From Polycaprolactone Coated Chitin‑Lignin Gel Fibrous Scaffolds, Turdimuhammad Abdullah, Kalamegam Gauthaman, Azadeh Mostafavi, Ahmed Alshahrie, Numan Salah, Pierfrancesco Morganti, Angelo Chianese, Ali Tamayol, Adnan Memic

Department of Mechanical and Materials Engineering: Faculty Publications

Non-healing wounds have placed an enormous stress on both patients and healthcare systems worldwide. Severe complications induced by these wounds can lead to limb amputation or even death and urgently require more effective treatments. Electrospun scaffolds have great potential for improving wound healing treatments by providing controlled drug delivery. Previously, we developed fibrous scaffolds from complex carbohydrate polymers [i.e. chitin-lignin (CL) gels]. However, their application was limited by solubility and undesirable burst drug release. Here, a coaxial electrospinning is applied to encapsulate the CL gels with polycaprolactone (PCL). Presence of a PCL shell layer thus provides longer shelf-life for the …


Effective Hair Styling Compositions And Processes, Yiqi Yang, Helan Xu, Kaili Song Nov 2020

Effective Hair Styling Compositions And Processes, Yiqi Yang, Helan Xu, Kaili Song

Department of Textiles, Merchandising, and Fashion Design: Faculty Publications

This disclosure relates to hair styling compositions and processes , and more particularly to compositions for disentangling or crosslinking hair that are useful in hair styling processes.


Advances In The Application Of Biomimetic Surface Engineering In The Oil And Gas Industry, Yanbao Guo, Zheng Zhang, Siwei Zhang Oct 2020

Advances In The Application Of Biomimetic Surface Engineering In The Oil And Gas Industry, Yanbao Guo, Zheng Zhang, Siwei Zhang

Friction

Friction is widespread in almost every field in the oil and gas industry, and it is accompanied by huge energy losses and potential safety hazards. To deal with a series of questions in this regard, biomimetic surfaces have been developed over the past decades to significantly reduce economic losses. Presently, biomimetic surface engineering on different scales has been successfully introduced into related fields of the oil and gas industry, such as drill bits and the inner surfaces of pipes. In this review, we focused on the most recent and promising efforts reported toward the application of a biomimetic surface in …


Rubber Plunger Surface Texturing For Friction Reduction In Medical Syringes, Haytam Kasem, Harel Shriki, Lihi Ganon, Michael Mizrahi, Kareem Abd-Rbo, Abraham J. Domb Oct 2020

Rubber Plunger Surface Texturing For Friction Reduction In Medical Syringes, Haytam Kasem, Harel Shriki, Lihi Ganon, Michael Mizrahi, Kareem Abd-Rbo, Abraham J. Domb

Friction

Friction is a genuine issue in the use of many medical devices involving rubbery materials such as plungers in medical syringes. This paper presents a new direction for the reduction of friction in medical syringes based on surface texturing of the rubber plunger. The specimens were prepared by casting poly(vinylsiloxane) (PVS) rubber into a pre-fabricated negative template obtained by 3D printing. Friction tests were performed on a home-made test-rig. It was clearly shown that friction resistance can be considerably manipulated when using textured plungers.


Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva Oct 2020

Erosive Wear Properties Of Za-27 Alloy-Based Nanocomposites: Influence Of Type, Amount, And Size Of Nanoparticle Reinforcements, Aleksandar Vencl, Ilija Bobić, Biljana Bobić, Kristina Jakimovska, Petr Svoboda, Mara Kandeva

Friction

Metal matrix nanocomposites (MMnCs) comprise a metal matrix filled with nanosized reinforcements with physical and mechanical properties that are very different from those of the matrix. In ZA-27 alloy-based nanocomposites, the metal matrix provides ductility and toughness, while usually used ceramic reinforcements give high strength and hardness. Tested ZA-27 alloy-based nanocomposites, reinforced with different types (SiC and Al2O3), amounts (0.2 wt.%, 0.3 wt.%, and 0.5 wt.%) and sizes (25 nm, 50 nm, and 100 nm) of nanoparticles were produced through the compocasting process with mechanical alloying pre-processing (ball milling). It was previously shown that the presence of nanoparticles in ZA-27 …


Friction And Wear Behaviors Of Mos2-Multi-Walled-Carbon-Nanotube Hybrid Reinforced Polyurethane Composite Coating, Zhaozhu Zhang, Mingming Yang, Junya Yuan, Fang Guo, Xuehu Men Oct 2020

Friction And Wear Behaviors Of Mos2-Multi-Walled-Carbon-Nanotube Hybrid Reinforced Polyurethane Composite Coating, Zhaozhu Zhang, Mingming Yang, Junya Yuan, Fang Guo, Xuehu Men

Friction

MoS2-multi-walled-carbon-nanotube (MWCNT) hybrids containing two-dimensional MoS2 and one-dimensional MWCNTs were synthesized through a one-step hydrothermal reaction. X-ray-diffraction and transmission-electron-microscopy results demonstrated that MoS2 nanosheets were successfully synthesized, and uniformly anchored on the MWCNTs' surfaces. Furthermore, the effects of the MoS2-MWCNT hybrids on the tribological performances of polyurethane composite coatings were investigated using a UMT-2MT tribo-tester. Friction and wear test results revealed that the friction coefficient and wear rate of a 3 wt% MoS2-MWCNT-1 filled polyurethane composite coating were reduced by 25.6% and 65.5%, respectively. The outstanding tribological performance of the MoS2-MWCNT-1 reinforced polyurethane composite coating was attributed to the excellent …


Sliding Friction Of Shale Rock On Dry Quartz Sand Particles, Huijie Zhang, Shuhai Liu, Huaping Xiao Oct 2020

Sliding Friction Of Shale Rock On Dry Quartz Sand Particles, Huijie Zhang, Shuhai Liu, Huaping Xiao

Friction

The sliding friction of rock, involving all kinds of particles at the contact surface, is relevant to many problems, ranging from those in artificial engineering to earthquake dynamics. In this work, the frictional performance of the shale rock-dry quartz sand contact was investigated using a self-developed testing device. The study showed that the coefficient of friction of the contact increases with nominal stress and that the corresponding friction force increases approximately linearly with nominal stress, which is directly related to the contact stress between each single sand particle and rock shale. An overall dynamic coefficient, γ, reflecting the response of …


Friction Predication On Pin-To-Plate Interface Of Ptfe Material And Steel, Zhuming Bi, Donald W. Mueller Oct 2020

Friction Predication On Pin-To-Plate Interface Of Ptfe Material And Steel, Zhuming Bi, Donald W. Mueller

Friction

In this paper, the friction behavior at a pin-to-plate interface is investigated. The pin and plate are made of Polytetrafluoroethylene (PTFE) and steel, respectively, and there is a reciprocating motion at the interface. Governing mathematical models for the relations of design variables and frictions are investigated, and a general procedure is proposed to solve the developed models and predict the friction forces at the interface subjected to given test conditions. Novel models have been developed to represent intrigued friction behaviors affected by various factors such as pin geometrics and finishes, lubrication conditions, and reciprocating speed. The test data from experiments …


Significant Friction Reduction Of High-Intensity Pulsed Ion Beam Irradiated Wc-Ni Against Graphite Under Water Lubrication, Gaolong Zhang, Yuechang Wang, Ying Liu, Xiangfeng Liu, Yuming Wang Oct 2020

Significant Friction Reduction Of High-Intensity Pulsed Ion Beam Irradiated Wc-Ni Against Graphite Under Water Lubrication, Gaolong Zhang, Yuechang Wang, Ying Liu, Xiangfeng Liu, Yuming Wang

Friction

Two types of commercial WC-Ni samples were irradiated with the High-intensity pulsed ion beam (HIPIB). Both the surface characteristics and tribo-characteristics of the non-irradiated and irradiated WC-Ni samples, sliding against graphite under water lubrication, were compared. Quite low steady friction coefficients (approximately of 0.02) of the irradiated WC-Ni were observed. The surface topographies and components were investigated. The quite low friction of the irradiated WC-Ni samples was ascribed to the higher fluid retention capability of the latter and the tribofilm formed during sliding.


Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova Oct 2020

Metal-Containing Nanomaterials As Lubricant Additives: State-Of-The-Art And Future Development, Igor E. Uflyand, Vladimir A. Zhinzhilo, Victoria E. Burlakova

Friction

This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years.


Experimental Study On The Tribo-Chemical Smoothening Process Between Self-Mated Silicon Carbide In A Water-Lubricated Surface-Contact Reciprocating Test, Le Jin, Herbert Scheerer, Georg Andersohn, Matthias Oechsner, Dieter Hellmann Oct 2020

Experimental Study On The Tribo-Chemical Smoothening Process Between Self-Mated Silicon Carbide In A Water-Lubricated Surface-Contact Reciprocating Test, Le Jin, Herbert Scheerer, Georg Andersohn, Matthias Oechsner, Dieter Hellmann

Friction

Silicon carbide (SiC) can be tribo-chemically smoothened during a self-mated sliding procedure in the aqueous environment. As well reported in the point-contact tests, this smoothening process works well due to the abundant water as oxidant. After this smoothening process, the tribo-surface is well polished, a closely mated tribo-gap naturally forms, and an ultra-low friction state is built. However, water in the tribo-gap could be insufficient in industrial applications, e.g., the seal gap in mechanical seals. In this study, the tribo-chemical smoothening behavior in such environment was researched. A surface-contact reciprocating test was used to simulate the aqueous environment where water …


Water-Based Superlubricity In Vacuum, Chen Xiao, Jinjin Li, Lei Chen, Chenhui Zhang, Ningning Zhou, Tao Qing, Linmao Qian, Jiyang Zhang, Jianbin Luo Oct 2020

Water-Based Superlubricity In Vacuum, Chen Xiao, Jinjin Li, Lei Chen, Chenhui Zhang, Ningning Zhou, Tao Qing, Linmao Qian, Jiyang Zhang, Jianbin Luo

Friction

This study achieved water-based superlubricity with the lubrication of H3PO4 solution in vacuum (highest vacuum degree <10-4 torr) for the first time by performing a pre-running process in air before running in vacuum. The stable water-based superlubricity was sustainable in vacuum (0.02 torr) for 14 h until the test was stopped by the user for non-experimental factor. A further analysis suggested that the superlubricity may be attributed to the phosphoric acid-water network formed in air, which can efficiently lock water molecules in the liquid lubricating film even in vacuum owing to the strong hydrogen bond interaction. Such capability to lock water is strongly affected by the strength of hydrogen bond and environmental conditions. The realization of water-based superlubricity with H3PO4 solution in vacuum can lead to its application in space environment.


Tribological Performance Of Novel Nickel-Based Composite Coatings With Lubricant Particles, Ignacio Tudela, Andrew J. Cobley, Yi Zhang Oct 2020

Tribological Performance Of Novel Nickel-Based Composite Coatings With Lubricant Particles, Ignacio Tudela, Andrew J. Cobley, Yi Zhang

Friction

The present study is focused on the evaluation of the tribological performance of novel Ni/hBN and Ni/WS2 composite coatings electrodeposited from an additive-free Watts bath with the assistance of ultrasound. Lubricated and non-lubricated scratch tests were performed on both novel composite coatings and on standard Ni deposits used as a benchmark coating to have an initial idea of the effect of the presence of particles within the Ni matrix. Under lubricated conditions, the performance of the Ni/hBN composite coating was very similar to the benchmark Ni coating, whereas the Ni/WS2 behaved quite differently, as the latter did not only show …


Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang Oct 2020

Numerical Analysis Of Time-Varying Wear With Elastic Deformation In Line Contact, Wanglong Zhan, Ping Huang

Friction

Wear is an important factor for failures of mechanical components. Current research on wear is mainly focused on experiments while the numerical simulation of wear is hardly used owing to the complexities of the wear process. Explaining the effect of friction on the wear process is important, as it will lead to a deeper understanding of the evolution of wear. This study proposed a numerical method to expound the wear process in the contact between an elastic cylinder and a half-space simulating the ring-block tester. There are two difficulties during the calculation; one is that the contact shapes vary with …


Optimal Control Of Active Nematics, Michael M. Norton, Piyush Grover, Michael F. Hagan, Seth Fraden Oct 2020

Optimal Control Of Active Nematics, Michael M. Norton, Piyush Grover, Michael F. Hagan, Seth Fraden

Department of Mechanical and Materials Engineering: Faculty Publications

In this work we present the first systematic framework to sculpt active nematic systems, using optimal control theory and a hydrodynamic model of active nematics. We demonstrate the use of two different control fields, (i) applied vorticity and (ii) activity strength, to shape the dynamics of an extensile active nematic that is confined to a disk. In the absence of control inputs, the system exhibits two attractors, clockwise and counterclockwise circulating states characterized by two co-rotating topological þ1 2 defects. We specifically seek spatiotemporal inputs that switch the system from one attractor to the other; we also examine phase-shifting perturbations. …


Microfluidic Systems With Embedded Cell Culture Chambers For High Throughput Biological Assays, Arian Jaberi, Amir Monemian Esfahani, Fariba Aghabaglou, Jae Sung Park, Sidy Ndao, Ali Tamayol, Ruiguo Yang Oct 2020

Microfluidic Systems With Embedded Cell Culture Chambers For High Throughput Biological Assays, Arian Jaberi, Amir Monemian Esfahani, Fariba Aghabaglou, Jae Sung Park, Sidy Ndao, Ali Tamayol, Ruiguo Yang

Department of Mechanical and Materials Engineering: Faculty Publications

The ability to generate chemical and mechanical gradients on chips is important both for creating biomimetic designs or enabling high-throughput assays. However, there is still a significant knowledge gap in the generation of mechanical and chemical gradients in a single device. In this study, we developed gradient-generating microfluidic circuits with integrated microchambers to allow cell culture and to introduce chemical and mechanical gradients to cultured cells. A chemical gradient is generated across the microchambers, exposing cells to a uniform concentration of drugs. The embedded microchamber also produces a mechanical gradient in the form of varied shear stresses induced upon cells …


The Concept Of The Mathematical Description Of The Multi-Coordinate Mechatronic Module Of The Robot, Temurbek Omonboyevich Rakhimov Sep 2020

The Concept Of The Mathematical Description Of The Multi-Coordinate Mechatronic Module Of The Robot, Temurbek Omonboyevich Rakhimov

Acta of Turin Polytechnic University in Tashkent

The article deals with the concept of mathematical de- scription of multi-coordinate mahatronic modules of robots. The main results of the work are a generalized structure of a multi- coordinate mechatronic module of motion, a kinematic diagram of an electromagnetic multi-coordinate mechatronic module with three independent coordinate linear and angular movements is proposed, consisting of four electromagnets, controlled couplings designed to transmit the reciprocating motion of the moving parts of electro- magnets to the output rods and a cable, which are associated with the links of work and bringing them into linear and angular mo- tion. A simulation model of …


Comparison Of Plantar Pressure Profile Of Young Adults During Training On Elliptical Devices And Overground Walking: A Pilot Study, Guilherme Manna Cesar, Thad W. Buster, Judith M. Burnfield Jul 2020

Comparison Of Plantar Pressure Profile Of Young Adults During Training On Elliptical Devices And Overground Walking: A Pilot Study, Guilherme Manna Cesar, Thad W. Buster, Judith M. Burnfield

Department of Mechanical and Materials Engineering: Faculty Publications

Background: Elliptical training may offer advantages over other cardiorespiratory exercises for those requiring podiatric care, since its constant double-limb support diminishes recurring high-impact plantar forces while allowing exercise in a functional, upright posture. Unknown is the impact of distinct elliptical models, that can alter user’s body mechanics, on potential variations in plantar pressure patterns.

Purpose: To compare plantar pressure variables while exercising on four ellipticals and walking.

Methods: For this cross-sectional pilot study, plantar pressure data were recorded from ten young adults while exercising on four ellipticals (True, Octane, Life Fitness, SportsArt) and walking overground. One-way repeated measures ANOVA identified …


Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski Jul 2020

Dynamics Of Discontinuities In Elastic Solids, Arkadi Berezovski, Mihhail Berezovski

Publications

The paper is devoted to evolving discontinuities in elastic solids. A discontinuity is represented as a singular set of material points. Evolution of a discontinuity is driven by the configurational force acting at such a set. The main attention is paid to the determination of the velocity of a propagating discontinuity. Martensitic phase transition fronts and brittle cracks are considered as representative examples.


Magnetically Induced Carrier Distribution In A Composite Rod Of Piezoelectric Semiconductors And Piezomagnetics, Guolin Wang, Jinxi Liu, Wenjie Feng, Jiashi Yang Jul 2020

Magnetically Induced Carrier Distribution In A Composite Rod Of Piezoelectric Semiconductors And Piezomagnetics, Guolin Wang, Jinxi Liu, Wenjie Feng, Jiashi Yang

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, we study the behavior of a composite rod consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under an applied axial magnetic field. Based on the phenomenological theories of piezoelectric semiconductors and piezomagnetics, a one-dimensional model is developed from which an analytical solution is obtained. The explicit expressions of the coupled fields and the numerical results show that an axially applied magnetic field produces extensional deformation through piezomagnetic coupling, the extension then produces polarization through piezoelectric coupling, and the polarization then causes the redistribution of mobile charges. Thus, the composite rod exhibits a coupling between the …


Lstm-Based Anomaly Detection For Non-Linear Dynamical System, Yue Tan, Chungjing Hu, Kuan Zhang, Kan Zeng, Ethan A. Davis, Jae Sung Park Jun 2020

Lstm-Based Anomaly Detection For Non-Linear Dynamical System, Yue Tan, Chungjing Hu, Kuan Zhang, Kan Zeng, Ethan A. Davis, Jae Sung Park

Department of Mechanical and Materials Engineering: Faculty Publications

Anomaly detection for non-linear dynamical system plays an important role in ensuring the system stability. However, it is usually complex and has to be solved by large-scale simulation which requires extensive computing resources. In this paper, we propose a novel anomaly detection scheme in non-linear dynamical system based on Long Short-Term Memory (LSTM) to capture complex temporal changes of the time sequence and make multi-step predictions. Specifically, we first present the framework of LSTM-based anomaly detection in non-linear dynamical system, including data preprocessing, multi-step prediction and anomaly detection. According to the prediction requirement, two types of training modes are explored …


Structure, Thermophysical Properties Of Liquids, And Their Connection With Glass Formability, Rongrong Dai May 2020

Structure, Thermophysical Properties Of Liquids, And Their Connection With Glass Formability, Rongrong Dai

McKelvey School of Engineering Theses & Dissertations

Metallic glasses have drawn significant attention due to their unique properties, such as high strength, excellent elastic energy storage capacity, and versatile processability. However, why some liquids can easily form metallic glasses while others donմ is still unclear. Since metallic glasses are formed when liquids are cooled fast enough to bypass crystallization, we hope to better understand glass formation by investigating the structural evolution and thermophysical properties of the liquids as they are cooled toward the glass transition. Multiple molecular dynamics simulations suggest a crossover temperature for the dynamics near the liquidus temperature, which corresponds to the onset of cooperative …


First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman May 2020

First-Principles Studies Of Anion Engineering In Functional Ceramics, Steven Timothy Hartman

McKelvey School of Engineering Theses & Dissertations

Ceramic materials display a wide variety of valuable properties, such as ferroelectricity, superconductivity, and magnetic ordering, due to the partially covalent bonds which connect the cations and anions. While many breakthroughs have been made by mixing multiple cations on a sublattice, the equivalent mixed-anion ceramics have not received nearly as much attention, despite the key role the anion plays in the materials’ properties. There is great potential for functional ceramics design using anion engineering, which aims to tune the materials properties by adding and removing different types of anions in existing classes of ceramic materials. In this dissertation, I present …