Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials

2020

Institution
Keyword
Publication
Publication Type
File Type

Articles 91 - 102 of 102

Full-Text Articles in Engineering

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel Jan 2020

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel

Theses and Dissertations

The use of a weaponized thermo-nuclear device in exo-atmospheric conditions would be of great impact on the material integrity of orbiting satellite infrastructure. Particular damage would occur to the multi-layered, solar cell components of such satellites. The rapid absorption of X-ray radiation originating from a nuclear blast into these layers occurs over a picosecond time scale and leads to the generation of Warm Dense Plasma (WDP). While incredibly difficult and costly to replicate in a laboratory setting, a collection of computational techniques and software libraries may be utilized to simulate the intricate atomic and subatomic physics characteristics of such an …


Experimental And Field Evaluation Of Frp Pedestrian Bridge Decks, Kalrav Singh Tomer Jan 2020

Experimental And Field Evaluation Of Frp Pedestrian Bridge Decks, Kalrav Singh Tomer

Graduate Theses, Dissertations, and Problem Reports

Traditional materials such as steel, timber, and concrete have continued to dominate their usage in civil infrastructure. They offer great advantages like strength and stiffness but at the same time they pose major issues in terms of durability and maintenance. Fiber reinforced polymer (FRP) exhibits outstanding properties like lightness, excellent corrosion and wear resistance along with superior thermo-mechanical properties. Glass FRPs (GFRPs) have emerged as one of the best alternatives in the field of civil infrastructure. It has been more than four decades since fiber reinforced polymer (FRP) composites have gained notable applications in civil infrastructure industry. However, FRPs have …


Dynamic Loading Experimentation And Surface Imaging Of Pressure Vessel Loadcell Fractures, Austin T. Sumner Jan 2020

Dynamic Loading Experimentation And Surface Imaging Of Pressure Vessel Loadcell Fractures, Austin T. Sumner

Honors College Theses

Pressure vessels are very common pieces of equipment in industry and they are used for a variety of applications. It is standard in industry to rest pressure vessels on load cells. For some special cases, the pressure vessels are rested on load cells instead of solid foundation. Pressure vessels and their loadcells are generally designed for static environmental conditions and loading and tend to experience adverse effects when exposed to dynamic environments, such as hurricanes and earthquakes. These adverse-loading conditions cause vibrations and asymmetrical loading on the load cells, which can concurrently cause unexpected failure. This research investigates the effects …


Increasing Access To Pv Technology Through Sustainable Racking: A Review Of Existing Literature And Ground Mounted Fixed Tilt Designs, And What Can Be Done Next, Parijata Prabhakara Jan 2020

Increasing Access To Pv Technology Through Sustainable Racking: A Review Of Existing Literature And Ground Mounted Fixed Tilt Designs, And What Can Be Done Next, Parijata Prabhakara

Dissertations, Master's Theses and Master's Reports

There is a lack of literature on the structural balance of systems (BOS), also called racking, for ground mount, fixed-tilt solar PV systems. Literature that exists discusses mostly rooftop racking and installations, additional wind loading, and weight considerations imposed on roofs, and little guidance is provided in building codes. The lack of peer-reviewed guidance on design requirements for domestic and large-scale application solar PV racking systems leaves most consumers relying on expensive, patented, off-the-shelf hardware. As PV cell technology and module costs have improved, we can start to focus on PV BOS improvements (particularly racking) and move towards sustainable designs …


Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky Jan 2020

Ideal Lacrosse Stick, Josh Beck, Tyler Skoloda, Noah Reed, Stanley Dembosky

Williams Honors College, Honors Research Projects

This project is focused on the design of a new and innovative lacrosse stick. Our main points of focus will be the strength and durability of the head. As well as solving some of the problems that exist in existing equipment. These problems were identified by interviewing experienced players at the college level. Benefits would include a stronger head that is easier to use for a player on the field to do things like pass, catch, shoot, and field ground balls in an optimal manner. Normally players will have to purchase new heads every season as a result of warping …


Jominy Hardenability Tester With In-Situ Heating, Luke Allen Jan 2020

Jominy Hardenability Tester With In-Situ Heating, Luke Allen

Williams Honors College, Honors Research Projects

This project centers on building a Jominy Hardenability tester with In-Situ heating for the manufacturing lab at the University of Akron. A new process and setup will be designed using engineering concepts in order to make the testing more efficient and safer for the teaching and testing of metal hardness. The current Jominy testing setup has efficiency issues within the transfer of specimen from induction heater to testing rig. Our design will simplify the design by creating a test rig that removes the traveling aspect of the specimen which will limit the amount of premature cooling done and will be …


Enhancement Of Charge Transfer In Thermally-Expanded And Strain-Stabilized Tips-Pentacene Thin Films, Yang Li Jan 2020

Enhancement Of Charge Transfer In Thermally-Expanded And Strain-Stabilized Tips-Pentacene Thin Films, Yang Li

Graduate College Dissertations and Theses

Two of the most critical experimentally accessible properties of small-molecule organic semiconductor materials are the charge carrier mobility, which probes charge transport, and the optical absorption spectrum which probes the energy levels of excited states. The impact of molecular packing on the optical and charge transport properties are often treated separately. However, these effects are actually linked at a fundamental level, and it is of interest to understand the interrelationship between them, as well as how they respond to strain and thermal expansion. In this thesis, we highlight the fundamental relationship between these two phenomena in 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene).

We present …


Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez Jan 2020

Experimental And Computational Studies Of Heat Transfer In Flexible Two-Dimensional Woven Fiber Ceramic Materials, Rodrigo Penide Fernandez

Graduate College Dissertations and Theses

Flexible thermal protection materials made from two-dimensional woven ceramics fibers are of significant interest for hypersonic inflatable aerodynamic decelerators being developed by NASA for future missions on Mars and other planets. A key component of the thermal shield is a heat-resistant outer ceramic fabric that must withstand harsh aero-thermal atmospheric entry conditions. However, a predictive understanding of heat conduction processes in complex woven-fiber ceramic materials under deformation is currently lacking. This dissertation presents a combined experimental and computational study of thermal conductivity in alumina-based Nextel-440 and silicon carbide Hi-Nicalon 5-harness-satin woven fabrics, using the hot-disk transient plane source method and …


Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes Jan 2020

Synthesis And Characterization Of Material Systems For 3d Printed Smart Structures, Hilda Fontes

Open Access Theses & Dissertations

The silica hollow spheres have demonstrated excellent results in multiple applications such as light-weight composites, and optical applications as a glass coating. This material also exhibits excellent thermal, shock impact, and hydrophilic properties extremely useful for industrial applications. However, a controllable size of the particle is desired to further increase the number of applications of the silica hollow spheres.

This Thesis aims a method to fabricate silica hollow spheres in a single step with a controlled diameter size. A study was developed to demonstrate the particle size change when adjusting the molecular weight of the medium by using different alcohol …


Exciton Coherence In 1d Phthalocyanine Based Organic Crystalline Thin Films, Kimngan Burrill Jan 2020

Exciton Coherence In 1d Phthalocyanine Based Organic Crystalline Thin Films, Kimngan Burrill

Graduate College Dissertations and Theses

Quantum coherence plays a vital role in the excitonic properties of organic semiconductors. Several theoretical and experimental studies have shown an unprecedented role of coherence in charge transfer and transport processes, which in turn can improve the performance of electronic devices. Specifically, an enhancement of exciton coherence size can result in fast energy transport and efficient charge separation. The ability to tailor the design and performance of organic electronics based on exciton coherence effects represents the possibility of ultrafast electronic applications in communication and information technology.

The objective of this thesis is the excitonic coherence studies of 1D crystalline thin …


Using Dielectric Characterization To Study Transport And Thermal Properties Of Gas/Supercritical Fluid Embedded Polymer Solution, Xiangxiao Yao Jan 2020

Using Dielectric Characterization To Study Transport And Thermal Properties Of Gas/Supercritical Fluid Embedded Polymer Solution, Xiangxiao Yao

Graduate College Dissertations and Theses

Gas/supercritical fluid (SCF) and polymer mixtures are applied broadly in industry, such as rigid and light foam products for aircraft use, foamed cushion in chairs or shoes, and gas separation membranes for capturing methane from landfill gas. To understand the gas transport properties and polymer thermal properties of the mixture, we detected the dielectric properties of the mixture at two conditions and developed a novel self-designed system for high temperature and high pressure measurement.

The transport properties of physical blowing agents in polymers is viewed as a critical parameter controlling the final foam product’s foam density, cell density, and cell …


Understanding Grain Boundary And Stress Concentration Effects On Strengthening Mechanisms In Nanotwinned Metals, Qiongjiali Fang Jan 2020

Understanding Grain Boundary And Stress Concentration Effects On Strengthening Mechanisms In Nanotwinned Metals, Qiongjiali Fang

Graduate College Dissertations and Theses

The superior strength and large tensile plasticity of nanotwinned (nt) face-centered-cubic metals have been explained by different twin size-dependent dislocation mechanisms and their inherent strengthening/softening effects. Grain boundary (GB) plasticity generally induces softening in nanocrystalline metals; however, our current understanding of the role of GBs in plasticity of nt metals remains limited. Contradicting reports exist in literature on how twin size influences stress concentration at GB – twin boundary (TB) intersections, which facilitates dislocation nucleation. In this thesis, molecular dynamics (MD) simulations and finite element analysis (FEA) were used to study the effects of GB plasticity and stress concentrations, on …