Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Centrifugally-Spun Ceramic/Carbon Composite Fibers And Their Use As Anode Materials In Li-Ion Batteries, Gabriel Gonzalez May 2021

Centrifugally-Spun Ceramic/Carbon Composite Fibers And Their Use As Anode Materials In Li-Ion Batteries, Gabriel Gonzalez

Theses and Dissertations

The work in this thesis focuses in the study of Centrifugally Spun Short Fiber Composites and their Implementation as Alternate Anode Material in Li-Ion Batteries. Due to their high theoretical capacity, abundance, and environmental friendliness, metal oxides have been widely studied as alternate anode materials for lithium ion batteries (LIBs). In this research work, the processing of SnO2 and SnO2/TiO2 ceramic short fibers as well as flexible and porous metal oxide carbon fibers (FPMOCFs) by centrifugal spinning followed by an optimized coating technique is reported. In addition, the electrochemical performance of the composites was also investigated and is provided.


The Use Of Succinonitrile As An Electrolyte Additive For Composite-Fiber Membranes In Lithium-Ion Batteries, Jahaziel Villarreal, Roberto Orrostieta Chavez, Sujay A. Chopade, Timothy P. Lodge, Mataz Alcoutlabi Mar 2020

The Use Of Succinonitrile As An Electrolyte Additive For Composite-Fiber Membranes In Lithium-Ion Batteries, Jahaziel Villarreal, Roberto Orrostieta Chavez, Sujay A. Chopade, Timothy P. Lodge, Mataz Alcoutlabi

Mechanical Engineering Faculty Publications and Presentations

In the present work, the effect of temperature and additives on the ionic conductivity of mixed organic/ionic liquid electrolytes (MOILEs) was investigated by conducting galvanostatic charge/discharge and ionic conductivity experiments. The mixed electrolyte is based on the ionic liquid (IL) (EMI/TFSI/LiTFSI) and organic solvents EC/DMC (1:1 v/v). The effect of electrolyte type on the electrochemical performance of a LiCoO2 cathode and a SnO2/C composite anode in lithium anode (or cathode) half-cells was also investigated. The results demonstrated that the addition of 5 wt.% succinonitrile (SN) resulted in enhanced ionic conductivity of a 60% EMI-TFSI 40% EC/DMC MOILE …


Designing A Recycling Facility For Energy Materials, Bartholomew Kitko, Matthew Berger, Elias Chiti, Trayce Harris, Mark Kulesa Jan 2020

Designing A Recycling Facility For Energy Materials, Bartholomew Kitko, Matthew Berger, Elias Chiti, Trayce Harris, Mark Kulesa

Williams Honors College, Honors Research Projects

The purpose of this design project is to create a recycling facility for energy materials. Different energy systems will be analyzed to determine the most economically appropriate energy material to recycle. A list of the energy systems to be analyzed includes catalyst converters, wind turbines, lithium ion batteries, photo-voltaic cells, and precious materials with high energy applications. This study involves two main parts: the research to determine the most appropriate energy material for recycling, while also choosing or creating recycling processes efficient enough to reduce the US’s reliance on foreign nations for obtaining their rare-earth materials. The second part is …


Challenges And Opportunities Of Layered Cathodes Of Linixmnyco(1-X-Y)O2 For High-Performance Lithium-Ion Batteries, Jason Frank May 2019

Challenges And Opportunities Of Layered Cathodes Of Linixmnyco(1-X-Y)O2 For High-Performance Lithium-Ion Batteries, Jason Frank

Mechanical Engineering Undergraduate Honors Theses

High energy density lithium-ion batteries (LIBs) are widely demanded for portable electronic devices and electrical vehicles. Layered-structure LiCoO2 oxide (LCO) has been the most commonly used cathode material in commercial LIBs. Compared to LCO, LiNi1-x-yMnxCoyO2 (NMC) cathodes are particularly attractive due to their reduced cost and higher capacity. Among the NMC cathodes, nickel-containing LiNi0.5Co0.3Mn0.2O2 (NMC532) is one of the most promising cathode materials undergoing intensive investigation, but suffers from a series of technical issues, such as structural instability, performance fading, and safety issues. In this …


Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez Dec 2018

Synthesis And Design Of Metals Sulfide/Carbon Composite-Fibers Anodes For Lithium Ion Batteries, Jorge Lopez

Theses and Dissertations

In this study, Forcespinning is used to produce Titanium sulfide (TiS2)/carbon composite fibers for use as lithium-ion battery anodes. The high surface area to volume ratio of the composite fibers can have a high impact on the ionic and electronic conductivity of the active materials leading to improved electrochemical performance of the battery. TiS2 nanoparticles were chosen as the active materials to produce Metal-Li-alloys/C composite fibers due to their high theoretical capacity and low volume change during charge/discharge cycles. The use of a 2-D layered structure of TiS2 nanoparticles in the carbon fiber matrix can greatly accommodate more Li-ions between …


Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway Oct 2017

Resilient And Real-Time Control For The Optimum Management Of Hybrid Energy Storage Systems With Distributed Dynamic Demands, Christopher R. Lashway

FIU Electronic Theses and Dissertations

A continuous increase in demands from the utility grid and traction applications have steered public attention toward the integration of energy storage (ES) and hybrid ES (HESS) solutions. Modern technologies are no longer limited to batteries, but can include supercapacitors (SC) and flywheel electromechanical ES well. However, insufficient control and algorithms to monitor these devices can result in a wide range of operational issues. A modern day control platform must have a deep understanding of the source. In this dissertation, specialized modular Energy Storage Management Controllers (ESMC) were developed to interface with a variety of ES devices. The EMSC provides …


Novel Design And Synthesis Of Nanostructured Electrode Materials For Advanced Lithium Ion Batteries, Zhiqiang Xie Jan 2017

Novel Design And Synthesis Of Nanostructured Electrode Materials For Advanced Lithium Ion Batteries, Zhiqiang Xie

LSU Master's Theses

Nowadays, rechargeable lithium-ion batteries (LIBs) have been widely used as energy storage devices for portable electronic devices. The increasing demand for their emerging applications in hybrid electric vehicles (HEVs) and electric vehicles (EVs) requires us to develop LIBs with higher energy density and power density. However, both the commercial cathode material (LiCoO2) and anode material (graphite) exhibit low specific capacity and poor rate capability, which severely hinder the practical application of lithium-ion batteries for transportation. This thesis mainly includes four research works on novel design and synthesis of nanostructured electrode materials for advanced lithium-ion batteries. To improve the electrochemical performances …


Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde Dec 2016

Thermal Transport In Lithium Ion Batteries: An Experimental Investigation Of Interfaces And Granular Materials, Aalok Jaisheela Uday Gaitonde

Open Access Theses

Increasing usage and recent accidents due to lithium-ion (Li-ion) batteries exploding or catching on fire has inspired research on the characterization and thermal management of these batteries. In cylindrical 18650 cells, heat generated during the battery's charge/discharge cycle is poorly dissipated to the surrounding through its metallic case due to the poor thermal conductivity of the jelly roll, which is spirally wound with many interfaces between electrodes and the polymeric separator. This work presents a technique to measure the thermal conduction across the metallic case-plastic separator interface, which ultimately limits heat transfer out of the jelly roll.

The polymeric separator …


Forcespinning®: An Alternative Method To Fabricate Metal Oxide/Carbon Composite Nanofiber Anodes For Li-Ion Batteries, Luis Zuniga Dec 2016

Forcespinning®: An Alternative Method To Fabricate Metal Oxide/Carbon Composite Nanofiber Anodes For Li-Ion Batteries, Luis Zuniga

Theses and Dissertations

Metals and their respective oxides have been highly regarded as next generation anode materials for lithium-ion batteries (LIBs). In this research work the electrochemical performance of Sn, SnO2, and TiO2. With the advantages of nanotechnology and the Forcespinning® method of fabricating micro and nanofibers, binder-free anodes are produced from metal or metal oxide/carbon composite microfibers. Through these microfibers the electrochemical performance of the above mentioned materials are significantly improved due to the increased surface area per volume providing a large number of reaction sites for the anode materials. Further performance enhancement was achieved by also modifying the fiber microstructure to …