Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Journal

2022

Institution
Keyword
Publication

Articles 31 - 60 of 136

Full-Text Articles in Engineering

Selective Reduction Of Trivalent Iron In Zinc Ferrite Using Elemental Sulphur, B T. Berdiyarov, Sh T. Khojiev, J B. Ismailov, S T. Matkarimov, Sh O. Ismatov Oct 2022

Selective Reduction Of Trivalent Iron In Zinc Ferrite Using Elemental Sulphur, B T. Berdiyarov, Sh T. Khojiev, J B. Ismailov, S T. Matkarimov, Sh O. Ismatov

Technical science and innovation

In this article, the process laws and technological aspects of the process of sintering the zinc-containing waste of a zinc plant with technical sulfur are considered. Zinc cake is obtained during the sulfuric acid leaching of calcined zinc ores and contains about 20% zinc and additional metals such as indium, cadmium, lead and copper. Copper cakes are somewhat difficult to work with because they contain ferrites and silicates belonging to acid-resistant spinels. Since the chemical and mineralogical composition of zinc production cakes consists of complex oxides, finding ways to process them is one of the actual topics of zinc metallurgy. …


Features Designing Special Clothing For The Hot Climate Of Uzbekistan, N Kh Mirtalipova, N A. Isaxujayeva Oct 2022

Features Designing Special Clothing For The Hot Climate Of Uzbekistan, N Kh Mirtalipova, N A. Isaxujayeva

Technical science and innovation

This paper considers the issues of establishing the relationship between the properties of fabric, clothing design and the comfort of clothing; communication of the size of the human body, allowance for free fitting, modern design when developing the design of clothing; connection of the allowance for free fitting with a suitable air gap. A diagram is given that characterizes the dependence of the comfort of clothing on its design and properties of fabrics. A mathematical model of the processes of air exchange in the underwear space is considered, which will allow obtaining more complete information and establishing more stringent dependences …


Preface To Special Issue On Water Electrolysis For Hydrogen Production, Li Li, Jin-Song Hu, Zi-Dong Wei Sep 2022

Preface To Special Issue On Water Electrolysis For Hydrogen Production, Li Li, Jin-Song Hu, Zi-Dong Wei

Journal of Electrochemistry

No abstract provided.


Recent Development Of Low Iridium Electrocatalysts Toward Efficient Water Oxidation, Jing Ni, Zhao-Ping Shi, Xian Wang, Yi-Bo Wang, Hong-Xiang Wu, Chang-Peng Liu, Jun-Jie Ge, Wei Xing Sep 2022

Recent Development Of Low Iridium Electrocatalysts Toward Efficient Water Oxidation, Jing Ni, Zhao-Ping Shi, Xian Wang, Yi-Bo Wang, Hong-Xiang Wu, Chang-Peng Liu, Jun-Jie Ge, Wei Xing

Journal of Electrochemistry

Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) is the key to implementing polymer electrolyte membrane water electrolyzer (PEMWE) for hydrogen production. To date, iridium (Ir) is the state-of-the-art OER catalyst, but still suffers from the insufficient activity and scarce earth abundance, which results in high cost both in stack and electricity. Design low-Ir catalysts with enhanced activity and stability that can match the requirements of high current and long-term operation in PEMWE is thus highly desired, which necessitate a deep understanding of acidic OER mechanisms, unique insights of material design strategies, and reliable performance evaluation norm, especially …


Perovskite-Type Water Oxidation Electrocatalysts, Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng, Xiao-Xin Zou Sep 2022

Perovskite-Type Water Oxidation Electrocatalysts, Xiao Liang, Ke-Xin Zhang, Yu-Cheng Shen, Ke Sun, Lei Shi, Hui Chen, Ke-Yan Zheng, Xiao-Xin Zou

Journal of Electrochemistry

The development of energy conversion/storage technologies can achieve the reliable and stable renewable energy supply, and bring us a sustainable future. As the core half-reaction of many energy-related systems, water oxidation is the bottleneck due to its sluggish kinetics of the four-concerted proton-electron transfer (CPET) process. This necessitates the exploitation of low cost, highly active and stable water oxidation electrocatalysts. Perovskite-type oxides possess diverse crystal structures, flexible compositions and unique electronic properties, enabling them ideal material platform for the optimization of catalytic performance. In this review, we provide a comprehensive summary for the crystal structures, electronic structures and synthetic methods …


Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao Sep 2022

Self-Supporting Nife Ldhs@Co-Oh-Co3 Nanorod Array Electrode For Alkaline Anion Exchange Membrane Water Electrolyzer, Dan-Dan Guo, Hong-Mei Yu, Jun Chi, Zhi-Gang Shao

Journal of Electrochemistry

The development of efficient and durable electrodes for anion exchange membrane water electrolyzers (AEMWEs) is essential for hydrogen production. In this work, 2D NiFe layered double hydroxides (NiFe LDHs) nanosheets were grown on the 1D cobaltous carbonate hydroxide nanowires array (Co-OH-CO3) and the unique 3D layered self-supporting nanorod array (NiFe LDHs@Co-OH-CO3/NF) electrode was obtained. Importantly, we demonstrated an efficient and durable self-supporting NiFe LDHs@Co-OH-CO3/NF electrode for oxygen evolution reaction (OER) and as the anode of the AEMWE. In a three-electrode system, the self-supporting NiFe LDHs@Co-OH-CO3/NF electrode showed excellent catalytic activity for OER, …


The Rapid Preparation Of Efficient Mofeco-Based Bifunctional Electrocatalysts Via Joule Heating For Overall Water Splitting, Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang Sep 2022

The Rapid Preparation Of Efficient Mofeco-Based Bifunctional Electrocatalysts Via Joule Heating For Overall Water Splitting, Ao Zhou, Wei-Jian Guo, Yue-Qing Wang, Jin-Tao Zhang

Journal of Electrochemistry

Water electrolysis is an available way to obtain green hydrogen. The development of highly efficient electrocatalysts is a current research hotspot for water splitting, but it remains challenging. Herein, we demonstrate the synthesis of a robust bifunctional multi-metal electrocatalysts toward water splitting via the rapid Joule-heating conversion of metal precursors. The composition and morphology were well regulated via altering the ratio of metal precursors. In particular, the trimetal MoC/FeO/CoO/carbon cloth (CC) electrode revealed the outstanding bifunctional electrocatalytic performance due to the unique composition and large electrochemical active surface area. Typically, the MoC/FeO/CoO/CC catalyst needed low overpotentials of 121 and 268 …


A Co Porphyrin With Electron-Withdrawing And Hydrophilic Substituents For Improved Electrocatalytic Oxygen Reduction, Hong-Bo Guo, Ya-Ni Wang, Kai Guo, Hai-Tao Lei, Zuo-Zhong Liang, Xue-Peng Zhang, Rui Cao Sep 2022

A Co Porphyrin With Electron-Withdrawing And Hydrophilic Substituents For Improved Electrocatalytic Oxygen Reduction, Hong-Bo Guo, Ya-Ni Wang, Kai Guo, Hai-Tao Lei, Zuo-Zhong Liang, Xue-Peng Zhang, Rui Cao

Journal of Electrochemistry

Understanding factors that influence the catalyst activity for oxygen reduction reaction (ORR) is essential for the rational design of efficient ORR catalysts. Regulating catalyst electronic structure is commonly used to fine-tune electrocatalytic ORR activity. However, modifying the hydrophilicity of catalysts has been rarely reported to improve ORR, which happens at the liquid/gas/solid interface. Herein, we report on two Co porphyrins, namely, NO2-CoP (Co complex of 5,10,15,20-tetrakis(4-nitrophenyl)porphyrin) and 5F-CoP (Co complex of 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin), and their electrocatalytic ORR features. By simultaneously controlling the electronic structure and hydrophilic property of the meso-substituents, the NO2-CoP showed higher electrocatalytic activity than …


Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng Sep 2022

Surface Structure Engineering Of Feni-Based Pre-Catalyst For Oxygen Evolution Reaction: A Mini Review, Jia-Xin Li, Li-Gang Feng

Journal of Electrochemistry

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, …


Evaluation Of Material Request Order To Support Sustainable Construction, Fajar Susilowati, Nur Nahdiah Anggraeni Aug 2022

Evaluation Of Material Request Order To Support Sustainable Construction, Fajar Susilowati, Nur Nahdiah Anggraeni

Makara Journal of Technology

This study was conducted on one of Indonesia’s apartment projects, in which reinforced concrete is the main structure. Based on existing project data, this project experienced a decline in the construction work’s progress, thus reducing the project’s overall progress. This decline occurred because the delivery of concrete reinforcement material was delayed. This study aimed to determine the process of material request order and its relationship with the work implementation, as well as the factors that influenced the delayed arrival of concrete reinforcement material at the project site. The method used in this study was observation and interview. Data were analyzed …


Low-Crystallinity And Heterostructured Aupt-Ru@Cnts As Highly Efficient Multifunctional Electrocatalyst, Tuan-Jie Gan, Jian-Ping Wu, Shi Liu, Wen-Jun Ou, Bin-Ling Bin-Ling, Xiong-Wu Kang Aug 2022

Low-Crystallinity And Heterostructured Aupt-Ru@Cnts As Highly Efficient Multifunctional Electrocatalyst, Tuan-Jie Gan, Jian-Ping Wu, Shi Liu, Wen-Jun Ou, Bin-Ling Bin-Ling, Xiong-Wu Kang

Journal of Electrochemistry

The catalytic activity of the catalysts is strongly dependent on the structure of the catalysts, and the exploration of their correlation and structure-controlled synthesis of the high-performance catalysts are always at the central. Currently, platinum (Pt) is the optimum catalyst for hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and alcohol oxidation reaction, while ruthenium (Ru) behaves as the champion catalyst for oxygen evolution reaction (OER) during water splitting. Preparing alloy catalysts with these precious metals can modulate the catalytic activity of these catalysts from the perspective of strain effect, ensemble effect and ligand effect. Here, we developed a strategy …


Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan Aug 2022

Facile One-Step Solid-State Synthesis Of Ni-Rich Layered Oxide Cathodes For Lithium-Ion Batteries, Jing-Yue Wang, Rui Wang, Shi-Qi Wang, Li-Fan Wang, Chun Zhan

Journal of Electrochemistry

Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to …


Quantitative Lithium Composite As 3d Lithium Foam Anode For Lithium Metal Battery, Hu-Dong Li, Wei-Shang Jia, Xin-Xiu Yan, Yao-Yue Yang Aug 2022

Quantitative Lithium Composite As 3d Lithium Foam Anode For Lithium Metal Battery, Hu-Dong Li, Wei-Shang Jia, Xin-Xiu Yan, Yao-Yue Yang

Journal of Electrochemistry

Lithium (Li) metal as an anode material for batteries has extremely high specific capacity and extremely low redox potential, which can significantly improve the energy density of the battery. However, the main problems faced by the use of Li metal anodes are Li dendrite growth, interfacial side reaction and volumetric change of electrode. Herein, a strategy to prepare the three-dimensional (3D) Li foam by combining 3D scaffold with quantitative Li was proposed to suppress Li dendrites growth and alleviate electrode volumetric change. The 3D Li foam facilitated the efficient utilization of Li metal by suppressing the Li dendrite growth, mitigating …


Optimized Electrochemical Performance Of Si@C Prepared By Hydrothermal Reaction And Glucose Carbon Source, Si Chen, Song-Sheng Zheng, Lei-Ming Zheng, Ye-Han Zhang, Zhao-Lin Wang Aug 2022

Optimized Electrochemical Performance Of Si@C Prepared By Hydrothermal Reaction And Glucose Carbon Source, Si Chen, Song-Sheng Zheng, Lei-Ming Zheng, Ye-Han Zhang, Zhao-Lin Wang

Journal of Electrochemistry

Silicon (Si) has been considered as the potential material for the next-generation lithium-ion batteries (LIBs) for its high capacity (4200 mAh·g-1, Li22Si5) and suitable working voltage (about 0.25 V vs. Li/Li+). However, the cycling stability and electrochemical performance of Si anode become significant challenges because of low intrinsic conductivity and huge volume variation (about 400%) during cycling processes. In addition, the repeated formation and destruction of surface solid electrolyte interphase (SEI) film will continuously consume the electrolyte and cause damage to LIBs. Carbon (C) materials, such as graphite, carbon spheres and tubes, have been widely applied …


Contents, Jaka Fajar Fatriansyah Aug 2022

Contents, Jaka Fajar Fatriansyah

Journal of Materials Exploration and Findings

No abstract provided.


The Effect Of Sample Placement In The Furnace During The Heat Treatment Process Of 7075-T6 Aluminum Alloy On Microstructure, Hardness, And Electrical Conductivity, Donanta Dhaneswara, Hardi Rindharto, Muhammad Syauqi Aqilafif Aug 2022

The Effect Of Sample Placement In The Furnace During The Heat Treatment Process Of 7075-T6 Aluminum Alloy On Microstructure, Hardness, And Electrical Conductivity, Donanta Dhaneswara, Hardi Rindharto, Muhammad Syauqi Aqilafif

Journal of Materials Exploration and Findings

This paper reports the effects of sample placement during the heat treatment on the microstructural morphology and mechanical properties of 7075 Al alloy such as hardness value and electrical conductivity. The material was in the formed of Al alloy sheets where samples were machined into a square with dimensions of 1.5 x 1.5 inch. The 7075-T0 Al alloy as samples were given heat treatment by precipitation hardening (aging) at temperature 120°C for 24 hours, so it becomes 7075-T6 Al alloy. Samples were subjected to some mechanical tests and the morphology of the resulting microstructures were characterized by optical microscopy. The …


Preface Of Volume 1 Issue 1 On Journal Of Materials Exploration And Findings (Jmef), Jaka Fajar Fatriansyah Aug 2022

Preface Of Volume 1 Issue 1 On Journal Of Materials Exploration And Findings (Jmef), Jaka Fajar Fatriansyah

Journal of Materials Exploration and Findings

No abstract provided.


The Optimization Of Failure Risk Estimation On The Uniform Corrosion Rate With A Non-Linear Function, Fernanda Hartoyo, Jaka Fajar Fatriansyah, Imam Abdillah Mas'ud, Farhan Rama Digita, Hanna Ovelia, Datu Rizal Asral Aug 2022

The Optimization Of Failure Risk Estimation On The Uniform Corrosion Rate With A Non-Linear Function, Fernanda Hartoyo, Jaka Fajar Fatriansyah, Imam Abdillah Mas'ud, Farhan Rama Digita, Hanna Ovelia, Datu Rizal Asral

Journal of Materials Exploration and Findings

Failures in the oil and gas pipeline system are conditions that must be avoided and anticipated because the losses due to the failures can occur at a very high level. Internal corrosion is one of the significant causes of the failures in pipeline systems. In addition, this type of corrosion is due to the high content of carbon dioxide and other corrosive substances in crude oil and natural gas. Therefore, an optimal inspection scheduling system is required to prevent the possibility of pipeline failures due to corrosion and to avoid any overspending on the budget due to excessive inspection scheduling. …


Investigating Features And Output Correlation Coefficient Of Natural Fiber-Reinforced Poly(Lactic Acid) Biocomposites, Andreas Federico, Siti Norasmah Surip, Wan Nor Raihan Wan Jaafar, Jaka Fajar Fatriansyah, Agrin Febrian Pradana Aug 2022

Investigating Features And Output Correlation Coefficient Of Natural Fiber-Reinforced Poly(Lactic Acid) Biocomposites, Andreas Federico, Siti Norasmah Surip, Wan Nor Raihan Wan Jaafar, Jaka Fajar Fatriansyah, Agrin Febrian Pradana

Journal of Materials Exploration and Findings

Polylactic acid (PLA) material has the potential to be applied in various industrial fields, but this material has shortcomings in terms of mechanical properties, especially mechanical strength, due to brittleness nature of PLA. The manufacture of PLA composite material with the addition of natural fibers as a reinforcing phase is one of the methods to increase the impact strength and maintain the biodegradable properties of the material. However, in theory, there are many factors that affect the mechanical properties of composite materials, thus making the mechanical properties of composites more complex than monolithic materials. The mechanical properties of these composite …


Material Selection Of Below-Knee Leg Prosthetics, Raihan Kenji Rizqillah Aug 2022

Material Selection Of Below-Knee Leg Prosthetics, Raihan Kenji Rizqillah

Journal of Materials Exploration and Findings

The effort to select the best pylon material, part of below-knee leg prosthetic, has been performed. It begins with function analysis to generate design requirement, which concludes that the objective is to select material that gives proper mechanical properties with lowest weigth and cost. Constraint requirements eliminate unsuitable material. Material indices, a scoring function, are derived from objective with respect to a function, and used for ranking material candidates. Ranking from material indices gives top material candidates of woods. Al alloy, Mg alloy, and ferrous alloy. Further seek of documentation is undertaken by failure analysis, value analysis, fabrication, and environmental …


61st Annual Rocky Mountain Conference On Magnetic Resonance Jul 2022

61st Annual Rocky Mountain Conference On Magnetic Resonance

Rocky Mountain Conference on Magnetic Resonance

Final program, abstracts, and information about the 61st annual meeting of the Rocky Mountain Conference on Magnetic Resonance, co-endorsed by the Colorado Section of the American Chemical Society and the Society for Applied Spectroscopy. Held in Copper Mountain, Colorado, July 25-29, 2022.


Mechanism And Application Of Nickel Nano-Cone By Electrodeposition On A Flexible Substrate, Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du Jul 2022

Mechanism And Application Of Nickel Nano-Cone By Electrodeposition On A Flexible Substrate, Xiu-Ren Ni, Ya-Ting Zhang, Chong Wang, Yan Hong, Yuan-Ming Chen, Yuan-Zhang Su, Wei He, Xian-Ming Chen, Ben-Xia Huang, Zhen-Lin Xu, Yi-Feng Li, Neng-Bin Li, Yong-Jie Du

Journal of Electrochemistry

Nano-array structure possesses promising prospect in power supply, optical device and electronic manufacturing. In this paper, a black nickel nano-cone array was prepared on a flexible substrate by galvanostatic deposition and the corresponding factors involved in the fabrication of nickel nano-cone array was explored. Experimental results showed that a large current density and low main salt concentration were not favored to the formation of cone nickel structure. It was also found that ammonium chloride, as the crystal modifier, was crucial to deposit the uniform nano-cone array. In addition, the growth mechanism of nickel nano-cone was further studied by molecular dynamics …


Effect Of Corrosion Inhibitors On Copper Etching To Form Thick Copper Line Of Pcb In Acidic Etching Solution, Xiao-Li Wang, Wei He, Xian-Ming Chen, Hong Zeng, Yuan-Zhang Su, Chong Wang, Gao-Sheng Li, Ben-Xia Huang, Lei Feng, Gao Huang, Yuan-Ming Chen Jul 2022

Effect Of Corrosion Inhibitors On Copper Etching To Form Thick Copper Line Of Pcb In Acidic Etching Solution, Xiao-Li Wang, Wei He, Xian-Ming Chen, Hong Zeng, Yuan-Zhang Su, Chong Wang, Gao-Sheng Li, Ben-Xia Huang, Lei Feng, Gao Huang, Yuan-Ming Chen

Journal of Electrochemistry

The chemical compounds of 2-mercaptobenzothiazole (2-MBT), benzotriazole (BTA) and phenoxyethanol (MSDS) as corrosion inhibitors were used to inhibit the copper etching to form the thick copper line of PCB in the acidic etching solution. The inhibition status was characterized with contact angle measurement, electrochemical test and etch factor calculation, while the corrosion morphology of copper surface was studied by scanning electron microscope. The adsorption mechanism of corrosion inhibitors on copper surface is analyzed by molecular dynamics and quantum chemistry calculations. The results indicated that the synergistic function of the two inhibitors could effectively promote their adsorption on the copper surface …


Electrodeposition Mechanism And Process Of A Novel Cyanide-Free Gold Sulfite Bath, Jia-Qiang Yang, Lei Jin, Wei-Qing Li, Zhao-Yun Wang, Fang-Zu Yang, Dong-Ping Zhan, Zhong-Qun Tian Jul 2022

Electrodeposition Mechanism And Process Of A Novel Cyanide-Free Gold Sulfite Bath, Jia-Qiang Yang, Lei Jin, Wei-Qing Li, Zhao-Yun Wang, Fang-Zu Yang, Dong-Ping Zhan, Zhong-Qun Tian

Journal of Electrochemistry

A novel cyanide-free gold sulfite process is introduced in this paper. In the bath, chloauric acid was directly employed as the main salt, and hydroxyethylidene diphosphonic acid (HEDP) was used as the stabilizer and coating grain refiner. The bath stability, the gold coating morphology and the mechanism of gold electrodeposition were studied in detail. The results showed that HEDP could significantly improve the bath stability. Moreover, the grains of the gold coating obtained from the gold sulfite bath without HEDP was rod-like, which grew gradually with the increasing of the deposition time, resulting in that the appearance of the coating …


Research Progress Of Copper Electrodeposition Filling Mechanism In Silicon Vias, Yun-Na Sun, Yong-Jin Wu, Dong-Dong Xie, Han Cai, Yan Wang, Gui-Fu Ding Jul 2022

Research Progress Of Copper Electrodeposition Filling Mechanism In Silicon Vias, Yun-Na Sun, Yong-Jin Wu, Dong-Dong Xie, Han Cai, Yan Wang, Gui-Fu Ding

Journal of Electrochemistry

Aiming at the electroplating filling problem of deep via TSV (through silicon via) interconnection, the multi-compatible integrated manufacturing technology team at the Shanghai Jiao Tong University has completed the numerical solution of the equations and realized the numerical simulation of TSV filling mode by applying the finite element method with arbitrary Lagrange Euler algorithm. The filling mechanisms of blind vias, the butterfly filling form for the through vias and the simultaneous filling mode of vias with different aspect ratios are analyzed by simulation, contributing to the parameter optimization and sample manufacturing. The effects of electroplating current density and heat treatment …


Electrodeposition Of Functional Epitaxial Films For Electronics, Kui Huang, Rong-Jiao Huang, Su-Qin Liu, Zhen He Jul 2022

Electrodeposition Of Functional Epitaxial Films For Electronics, Kui Huang, Rong-Jiao Huang, Su-Qin Liu, Zhen He

Journal of Electrochemistry

Electrodeposition is a solution-based synthesis technique that can be used to fabricate various functional materials on conductive or semiconductive substrates under ambient conditions. Electrodeposition is usually triggered by an artificial electric stimulation (i.e., applied potential/current) to the substrate to oxidize or reduce ions, molecules, or complexes in the deposition solution layer near the substrate surface, which drives this solution layer to depart from its thermodynamic equilibrium and consequently causes the assembly of targeted deposits on the substrate. During electrodeposition, many experimental parameters could affect the properties of the deposits in different ways. To date, many elements (both metals and nonmetals), …


Electrochemical Deposition Of Copper Pillar Bumps With High Uniformity, Bai-Zhao Tan, Jian-Lun Liang, Zi-Liang Lai, Ji-Ye Luo Jul 2022

Electrochemical Deposition Of Copper Pillar Bumps With High Uniformity, Bai-Zhao Tan, Jian-Lun Liang, Zi-Liang Lai, Ji-Ye Luo

Journal of Electrochemistry

Electrochemical deposition of copper pillar bumps (CPBs) is one of the key technologies for the advanced packaging. In this study, the effects of the additive concentration, the electrolyte convection, the current density, and the electroplating system on the uniformity of the CPBs have been systematically investigated. The results showed that the profiles of the CPBs were mainly determined by the additive concentration, the bath convection and the current density, while the heights of the CPBs were mainly affected by the electroplating system. For the CPBs profiles, it was found that the low leveler concentration and high current density would generally …


Investigation Of Through-Hole Copper Electroplating With Methyl Orange As A Special Leveler, Jia-Ying Xu, Shou-Xu Wang, Yuan-Zhang Su, Yong-Jie Du, Guo-Dong Qi, Wei He, Guo-Yun Zhou, Wei-Hua Zhang, Yao Tang, Yu-Yao Luo, Yuan-Ming Chen Jul 2022

Investigation Of Through-Hole Copper Electroplating With Methyl Orange As A Special Leveler, Jia-Ying Xu, Shou-Xu Wang, Yuan-Zhang Su, Yong-Jie Du, Guo-Dong Qi, Wei He, Guo-Yun Zhou, Wei-Hua Zhang, Yao Tang, Yu-Yao Luo, Yuan-Ming Chen

Journal of Electrochemistry

Methyl Orange (MO) with two kinds of functional groups can act as both an accelerator and an inhibitor, which has been used as a special leveler to simplify the electroplating additive system in the through-hole (TH) copper electroplating experiments. In this work, the role of MO in TH electroplating is characterized by molecular dynamics simulations and quantum chemical calculations. It is suggested that MO can spontaneously flatten the copper surface and be well adsorbed on the cathode surface, which inhibit the copper electrodeposition on the cathode. Electrochemical behavior of MO was evaluated by galvanostatic measurements (GM) and cyclic voltammetry (CV) …


Synthesis And Consolidation Of The Aluminosilicate Mineral Anorthite, Lauren E. Eccles Jul 2022

Synthesis And Consolidation Of The Aluminosilicate Mineral Anorthite, Lauren E. Eccles

Pursuit - The Journal of Undergraduate Research at The University of Tennessee

Solid-state ceramic synthesis is a fabrication process involving high temperature reactions of solid component powders and is used to prepare materials with novel and advanced properties. Regarding synthetic mineral ceramics, the solid-state process makes it possible to design synthetic minerals with specific compositions and properties not commonly found in their natural, comparatively impure, counterparts. This study focuses on the synthesis of the feldspar anorthite, CaAl2Si2O8, via solid-state procedures and the densification of the synthesized powders using the technique of uniaxial hot-pressing. Constituent powders of aluminum sesquioxide (Al2O3), silicon dioxide (SiO …


Study Thermodynamics Of The Magnetite Sulfidation In Copper Smelting Processes, A S. Khasanov, Q T. Ochildiyev, B T. Berdiyarov, Sh T. Khojiev, S T. Matkarimov Jul 2022

Study Thermodynamics Of The Magnetite Sulfidation In Copper Smelting Processes, A S. Khasanov, Q T. Ochildiyev, B T. Berdiyarov, Sh T. Khojiev, S T. Matkarimov

Technical science and innovation

The article discusses the problem of reducing the amount of magnetite in the impregnation of copper in the slag generated after the conversion process in copper production in the furnace to reduce slag. Accordingly, a method of lowering magnetite by sulfidation has been proposed, using elemental sulfur as a local and relatively inexpensive sulfiding-reducing agent. The mechanism of chemical phenomena occurring in the interaction regions of magnetite and elemental sulfur has been developed. Based on the mechanism of chemical reactions produced, each chemical reaction that occurs in the process is analysed from a thermodynamic point of view. According to the …