Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 96

Full-Text Articles in Engineering

Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang May 2022

Synthesis And Molecular Processes Governing Self-Healing Polymeric Materials, Siyang Wang

All Dissertations

Self-healing polymers capable of recovering from physical damages are promising materials for advanced technologies. In these studies, we developed routes to achieve self-healable properties in acrylic-based copolymers that rely on non-covalent dipolar interactions present in essentially all polymeric materials. Using a combination of spectroscopic tools, thermo-mechanical analysis, and molecular dynamic (MD) simulations, these studies have shown that dipolar interactions lead to conformational changes of macromolecular segments which, in turn, result in self-healing without external intervention. This dissertation also describes the development of novel self-healable acrylic-based covalent adaptable networks (CANs) that combine reprocessing and self-healing properties. The utilization of dipolar interactions …


Graphene Oxide-Thermoplastic Nanocomposites: Fabrication And Properties, Seyedeh Mastooreh Seyedi Ghezghapan May 2022

Graphene Oxide-Thermoplastic Nanocomposites: Fabrication And Properties, Seyedeh Mastooreh Seyedi Ghezghapan

All Dissertations

Polymer nanocomposites are used for a wide variety of applications. These nanocomposites can have a number of important characteristics depending on the nature of the nanomaterial, its size, volume fraction, its distribution, and interactions within the host polymer. Mechanical strength, thermal and electrical conductivity are some of these materials' most focused and studied features. Besides the positive influences of the reinforcements, nanomaterials also might have some adverse impacts on the polymer matrix. These issues could arise from the aggregation of the fillers and the poor interfacial interactions of the components. Several approaches are introduced to modify the nanofillers and enhance …


Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge May 2022

Reactive Thin Film Polymers And Thin Film Composite Membranes For The Rapid Screening Of Uranium Isotopes, Abenazer W. Darge

All Dissertations

Traditional radiochemistry approaches for the detection of trace-level alpha-emitting radioisotopes in water require lengthy offsite sample preparations and do not lend themselves to rapid quantification. Therefore, a novel platform is needed that combines onsite purification, concentration, and isotopic screening with a fieldable detection system. My dissertation research objective was to develop novel reactive thin polymer films and thin film composite membranes for the selective separation of uranium from environmental water followed by direct isotopic analysis by alpha spectroscopy. Chapter 1 reviews progress made on uranium separation from aqueous matrices and discusses methods used for the determination of isotopic composition.

Chapter …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar May 2022

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …


Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang May 2022

Synthesis Of Monodisperse Nanoscintillators At High Temperatures For Biomedical Relevant Applications, Eric Zhang

All Dissertations

Luminescent sub-100 nm particulates continuously generate immense research interest in the biomedical field for imaging, theranostics, and optogenetics. Conventionally, upconversion nanoparticles or UV activated semiconductors are studied, however these materials are limited by biological barriers such as the skin which reduces the penetration depth of these excitation sources, tissue's auto- fluorescence, and toxicity. One approach to overcome these challenges is to use nanoscintillators (sub-100 nm materials that can generate visible light using high energy excitation sources such as x-rays) which can generate light locally to the human body. Numerous scintillators have been reported since the discovery of x-rays from the …


Sustainable Composites From Agricultural And Petroleum Waste, Menisha S. Karunarathna May 2022

Sustainable Composites From Agricultural And Petroleum Waste, Menisha S. Karunarathna

All Dissertations

Green gas emission has been a pervasive and persistent subject of debate for a prolonged period. The soaring number of industries and vehicle fuel emissions presage a concomitant rise in global CO2 emissions. Global cement production is responsible for 8% of the total CO2 release, yet, the production continues due to the surging demand. Hence, there is an ongoing quest to find alternatives for cement and building materials produced with zero to lower CO2 emissions. The work presented in this dissertation focuses on finding recyclable, zero CO2 gas-producing high sulfur biocomposites materials, which can compete with …


Deep Learning-Guided Prediction Of Material’S Microstructures And Applications To Advanced Manufacturing, Jianan Tang Dec 2021

Deep Learning-Guided Prediction Of Material’S Microstructures And Applications To Advanced Manufacturing, Jianan Tang

All Dissertations

Material microstructure prediction based on processing conditions is very useful in advanced manufacturing. Trial-and-error experiments are very time-consuming to exhaust numerous combinations of processing parameters and characterize the resulting microstructures. To accelerate process development and optimization, researchers have explored microstructure prediction methods, including physical-based modeling and feature-based machine learning. Nevertheless, they both have limitations. Physical-based modeling consumes too much computational power. And in feature-based machine learning, low-dimensional microstructural features are manually extracted to represent high-dimensional microstructures, which leads to information loss.

In this dissertation, a deep learning-guided microstructure prediction framework is established. It uses a conditional generative adversarial network (CGAN) …


Understanding Process-Structure-Property-Performance Relationships Of Thermoplastic Olefins (Tpo) Foams Through A Novel Manufacturing To Response Pathway, Sai Aditya Pradeep Dec 2021

Understanding Process-Structure-Property-Performance Relationships Of Thermoplastic Olefins (Tpo) Foams Through A Novel Manufacturing To Response Pathway, Sai Aditya Pradeep

All Dissertations

The global transportation industry is the second highest contributor to climate change. As a result, there has been a concerted effort to spearhead research in economical lightweighting technologies, as every 10 % reduction in weight will lead to to 6 – 8 % improvement in fuel efficiency. Additionally, the recent push for electrification and the emphasis on Corporate Average Fuel Economy (CAFE) standards have seen original equipment manufacturers (OEM’s) dive into lightweighting of materials to improve overall range and/or fuel-efficiency. Thermoplastic Olefins (TPOs) have in recent years carved out a niche in the automotive industry due to advantages such as …


Mechanical Interfacial Locking And Multiscale Modeling Of Reinforced Thermoplastic Composites For Structural Applications, Anmol Kothari Dec 2021

Mechanical Interfacial Locking And Multiscale Modeling Of Reinforced Thermoplastic Composites For Structural Applications, Anmol Kothari

All Dissertations

The ever-growing pressure of reducing the adverse impact of transportation systems on environment has pushed industries towards fuel-efficient and sustainable solutions. While several approaches have been used to improve fuel efficiency, the light-weighting of structural components has proven broadly effective. In this regard, reinforced thermoplastic composites (RTPC), owing to their high recyclability, higher impact strength and fast cycle times, have become competitive candidates at an industrial scale. However, to implement RTPC toward large scale structural applications several challenges pertaining to material design and manufacturing effects need to be addressed. To this end, a computational study is carried out to address …


Investigation And Characterization Of New Optically Stimulated Luminescence (Osl) Dosimetric Materials, Linyu Pan Dec 2021

Investigation And Characterization Of New Optically Stimulated Luminescence (Osl) Dosimetric Materials, Linyu Pan

All Dissertations

Optically stimulated luminescence (OSL) dosimeters have attracted increasing attention due to advantages over TL dosimeters, including no thermal quenching and higher sensitivity. Nevertheless, currently, there are only two commercially available OSL dosimeters, BeO and Al2O3:C. An OSL dosimeter requires low effective atomic number (Zeff < 16), at least one type of recombination center and one type of trap, and UV~blue emission. In this dissertation, motivated by the search of new OSL dosimetric materials, a systematic investigation of alumina (Zeff = 11.3) and magnesium aluminate spinel (Zeff = 11.2) based materials was performed in terms of the engineering of the recombination centers and electronic traps. Microstructural characterization was executed by means of X-ray diffraction (XRD) and Raman spectroscopy. Luminescence was characterized under X-ray excitation (radioluminescence; RL) at ambient and …


Production And Characterization Of Uranium Sol Gel Surrogates Produced With Cerium Acetate And Cerium Nitrate, Matthew Brett Alford Aug 2020

Production And Characterization Of Uranium Sol Gel Surrogates Produced With Cerium Acetate And Cerium Nitrate, Matthew Brett Alford

All Dissertations

For the production of ceramic microspheres for future space travel, new methods of processing must be explored. The sol gel method proves promising for the production of uranium-based ceramic microspheres that are consistent enough in size and shape for such an application. A process for producing these microspheres has already been established, but there are avenues for improvement.

Handling of radioactive material like uranium is not always possible or warranted. As such, a non-radioactive surrogate that greatly resembles the processing of its actual radioactive counterpart. Herein this work a cerium-based surrogate is developed to closely resemble an already established process …


Synthesis And Characterization Of Glycidyl Methacrylate-Based Graft Copolymer Functional Interfaces, Nikolay Brordinov Dec 2017

Synthesis And Characterization Of Glycidyl Methacrylate-Based Graft Copolymer Functional Interfaces, Nikolay Brordinov

All Dissertations

Modification of materials properties such as surface energy, wettability, ability to absorb, contain or release specific type of chemicals enables practical application of these materials in various scientific and engineering set-ups. However, designing protocol that could be easily adapted for different situations and simultaneously unlock multiple variations of the resulting properties is a non-trivial task. This dissertation is devoted to application of glycidyl methacrylate-based graft copolymers for the purposes of surface modification, establishing fundamental trends and dependencies of this process and exploring the possible range of applications. These materials have extremely valuable property to undergo controllable post-synthetic modifications including surface …


Designing Optical Properties In Infrared Glass, Benn Gleason Dec 2015

Designing Optical Properties In Infrared Glass, Benn Gleason

All Dissertations

Chalcogenide glasses (ChGs) are well-known for their attractive optical properties, such as high refractive index and transparency in across infrared wavelengths. ChGs also possess the ability to compositionally tune properties such as the refractive index, the thermo-optic coefficient, and other non-optical properties. Chalcogenide glasses with compositionally tailored physical and optical properties will provide optical designers with new materials necessary to create novel infrared imaging systems requiring new or expanded functionality. This dissertation has evaluated the relationship between glass composition, the resulting atomic structure, and resulting optical and thermo-optical properties, with specific focus on the infrared refractive index and the thermo-optic …


Synthesis And Characterization Of Oleophobic Fluorinated Polyester Films, Tugba Demir Dec 2015

Synthesis And Characterization Of Oleophobic Fluorinated Polyester Films, Tugba Demir

All Dissertations

The study presented in this dissertation is dedicated to the synthesis and characterization of oleophobic fluorinated polyester films. Specifically, the blending of oleophilic polyethylene terephthalate (PET) with low surface energy materials such as fluorinated polyesters has been used in order to fabricate oleophobic PET films. First, fluorinated polyesters (P(PF-oate-R)) possessing different end-groups (-COOH, -OH and -CF3) are synthesized via polycondensation reaction of isophthaloyl chloride with perfluoro ether alcohols. Then, they are solvent-blended with PET at various concentrations to obtain oleophobic polyester films of different compositions. In addition, the films are annealed to investigate the effect of annealing on surface properties …


Synthesis And Characterization Of Chemically Functionalized Shape Memory Nanofoams For Unattended Sensing Applications, Anna Paola Soliani Dec 2014

Synthesis And Characterization Of Chemically Functionalized Shape Memory Nanofoams For Unattended Sensing Applications, Anna Paola Soliani

All Dissertations

The work in this dissertation is devoted to the synthesis and characterization of novel materials for off-line unattended sensing: shape-memory grafted nanofoams. The fabrication process and characterization of highly efficient, polymeric nanosensor element with the ability to selectively detect analytes and retain memory of specific exposure events is reported. These shape memory nanofoams could potentially act as efficient and highly sensitive coatings for evanescent waveguide-based optical monitoring systems. On exposure to specific analytes, the polymeric coatings locally change their internal structure irreversibly at the nanolevel, affecting the local optical properties such as refractive index. Currently, enrichment polymer layers (EPLs) are …


Earth Abundant Thin Film Technology For Next Generation Photovoltaic Modules, Githin Alapatt Dec 2014

Earth Abundant Thin Film Technology For Next Generation Photovoltaic Modules, Githin Alapatt

All Dissertations

With a cumulative generation capacity of over 100 GW, Photovoltaics (PV) technology is uniquely poised to become increasingly popular in the coming decades. Although, several breakthroughs have propelled PV technology, it accounts for only less than 1% of the energy produced worldwide. This aspect of the PV technology is primarily due to the somewhat high cost per watt, which is dependent on the efficiency of the PV cells as well as the cost of manufacturing and installing them. Currently, the efficiency of the PV conversion process is limited to about 25% for commercial terrestrial cells; improving this efficiency can increase …


Composite Films With Magnetic Nanorods: Fundamentals, Processing And Applications, Yu Gu Dec 2014

Composite Films With Magnetic Nanorods: Fundamentals, Processing And Applications, Yu Gu

All Dissertations

This Dissertation is centered on studying the composite films with magnetic nanorods. In recent years, one-dimensional magnetic nanostructures, such as magnetic nanorods, chains of magnetic nanoparticles, and nanotubes filled with magnetic nanoparticles have caught great attentions due to the breadth of applications. Their unique magnetic and geometrical features open new avenues of studies in medicine, sensors, optofluidics, magnetic swimming, and microrheology. In particular, they offered great opportunities for design of multifunctional devices and for manufacturing of anisotropic nano- and microstructures with unprecedented magnetic and mechanical properties. However, the strategy for nanorod alignment in both Newtonian and complex fluids has not …


High-Productivity Membrane Adsorbers: Polymer Surface-Modification Studies For Ion-Exchange And Affinity Bioseparations, Heather Chenette Aug 2014

High-Productivity Membrane Adsorbers: Polymer Surface-Modification Studies For Ion-Exchange And Affinity Bioseparations, Heather Chenette

All Dissertations

This Dissertation centers on the surface-modification of macroporous membranes to make them selective adsorbers for different proteins, and the analysis of the performance of these membranes relative to existing technology. Traditional chromatographic separations for the isolation and purification of proteins implement a column packed with resin beads or gel media that contain specific binding ligands on their exposed surface area. The productivity of this process is balanced by the effective use of the binding sites within the column and the speed at which the separation can take place, in addition to the need to maintain sufficient protein purity and bioactivity. …


An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi Aug 2014

An Experimental Investigation Towards Improvement Of Thermoelectric Properties Of Strontium Titanate Ceramics, Arash Mehdizadeh Dehkordi

All Dissertations

The direct energy conversion between heat and electricity based on thermoelectric effects is a topic of long-standing interest in condensed matter materials science. Experimental and theoretical investigations in order to understand the mechanisms involved and to improve the materials properties and conversion efficiency have been ongoing for more than half a century. While significant achievements have been accomplished in improving the properties of conventional heavy element based materials (such as Bi$_2$Te$_3$ and PbTe) as well as the discovery of new materials systems for the close-to-room temperature and intermediate temperatures, high-temperature applications of thermoelectrics is still limited to one materials system, …


Effect Of Silicone Finishes On The Burning Behavior Of Polyester, Julien Boyon Aug 2014

Effect Of Silicone Finishes On The Burning Behavior Of Polyester, Julien Boyon

All Dissertations

Polyester fibers are widely used as filling in home applications such as pillows or comforters. Silicone finishes can be used to reduce friction between fibers during processing or as softeners to impart a pleasant down like hand on the fibers. However, it has been reported that these added silicone-based finishes may have a negative effect on the burning behavior of polyester. This research examined the possible mechanisms that can modify the response of polyester fibers when subjected to a flame source. In this study, a spunbond needled polyester nonwoven substrate was treated with different commercial silicone-based finishes. A vertical flame …


Synthesis And Characterization Of Nanoscale Polymer Films Grafted To Metal Surfaces, Yuriy Galabura Aug 2014

Synthesis And Characterization Of Nanoscale Polymer Films Grafted To Metal Surfaces, Yuriy Galabura

All Dissertations

Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer 'grafting to' technique …


Advanced Bulk Processing Of Lightweight Materials For Utilization In The Transportation Sector, Justin Milner Aug 2014

Advanced Bulk Processing Of Lightweight Materials For Utilization In The Transportation Sector, Justin Milner

All Dissertations

The overall objective of this research is to develop the microstructure of metallic lightweight materials via multiple advanced processing techniques with potentials for industrial utilization on a large scale to meet the demands of the aerospace and automotive sectors. This work focused on (i) refining the grain structure to increase the strength, (ii) controlling the texture to increase formability and (iii) directly reducing processing/production cost of lightweight material components. Advanced processing is conducted on a bulk scale by several severe plastic deformation techniques including: accumulative roll bonding, isolated shear rolling and friction stir processing to achieve the multiple targets of …


Synthesis And Characterization Of Polymer Layers For Control Of Fluid Transport, Fehime Vatansever Dec 2013

Synthesis And Characterization Of Polymer Layers For Control Of Fluid Transport, Fehime Vatansever

All Dissertations

The level of wetting of fiber surface with liquids is an important characteristic of fibrous materials. It is related to fiber surface energy and the structure of the material. Surface energy can be changed by surface modification via the grafting methodologies that have been reported for introducing new and stable functionality to fibrous substrates without changing bulk properties.

Present work is dedicated to synthesis and characterization of macromolecular layers grafted to fiber surface in order to achieve directional liquid transport for the modified fabric. Modification technique used here is based on formation of stable polymer layer on fabric surface using …


Synthesis And Characterization Of Multi-Component Enrichment Polymer Layers For Chemical Sensor Applications, James Giammarco Dec 2013

Synthesis And Characterization Of Multi-Component Enrichment Polymer Layers For Chemical Sensor Applications, James Giammarco

All Dissertations

This dissertation presents the building and study of a "universal" enrichment polymer layer system (EPLS). Thin polymer films have been utilized as enrichment layers for evanescent waveguide chemical sensors. The chemical nature of the polymer provides affinity which promotes the analyte to be absorbed. Having one highly sensitive polymer layer is suitable for a single target volatile organic compound (VOC). Here, the development of multi-layered and multi-component thin polymer films has been done to allow for more diverse affinity. Several parameters were identified to make the EPLSs suitable as enrichment layers for chemical sensor devices. The evanescent sensor devices used …


Design And Synthesis Of Polymer - Magnetic Nanoparticle Composites For Use In Biomedical Applications, Roland Stone Dec 2013

Design And Synthesis Of Polymer - Magnetic Nanoparticle Composites For Use In Biomedical Applications, Roland Stone

All Dissertations

The future of diagnostics and therapeutic drugs in biomedicine is nanoparticles. These nanoparticles come in many different shapes, sizes, and combination of materials. Magnetic nanoparticles have been studied for many years for use in biomedicine, not only for their high surface area, but also because of its unique magnetic properties. They can magnetically interact with their environment, be guided to a specific location, and manipulated to release energy in the form of heat. To ensure that these magnetic nanoparticles survive in the circulatory system, they must be modified with materials to make them colloidally stable in water and shield them …


Synthesis And Characterization Of Thermally Responsive Polymer Layers, Michael Seeber Aug 2013

Synthesis And Characterization Of Thermally Responsive Polymer Layers, Michael Seeber

All Dissertations

Future devices such as biomedical and microfluidic devices, to a large extent, will depend on the interactions between the device surfaces and the contacting liquid. Further, biological liquids containing proteins call for controllable interactions between devices and such proteins, however the bulk material must retain the inherent mechanical properties from which the device was fabricated from. It is well known that surface modification is a suitable technique to tune the surface properties without sacrificing the bulk properties of the substrate.
In the present study, surface properties were modified through temperature responsive polymer layers. After the modification, the surfaces gained switchability …


Electrospun Nanofiber Yarns For Nanofluidic Applications, Chen-Chih Tsai Aug 2013

Electrospun Nanofiber Yarns For Nanofluidic Applications, Chen-Chih Tsai

All Dissertations

This dissertation is centered on the development and characterization of electrospun nanofiber probes. These probes are envisioned to act like sponges, drawing up fluids from microcapillaries, small organisms, and, ideally, from a single cell. Thus, the probe performance significantly depends on the materials ability to readily absorb liquids. Electrospun nanofibers gained much attention in recent decades, and have been applied in biomedical, textile, filtration, and military applications. However, most nanofibers are produced in the form of randomly deposited non-woven fiber mats. Recently, different electrospinning setups have been proposed to control alignment of electrospun nanofibers. However, reproducibility of the mechanical and …


Elaboration And Optimization Of Tellurite-Based Materials For Raman Gain Application, Guillaume Guery Aug 2013

Elaboration And Optimization Of Tellurite-Based Materials For Raman Gain Application, Guillaume Guery

All Dissertations

Tellurite-based oxide glasses have been investigated as promising materials for Raman gain applications, due to their good linear and nonlinear optical properties and their wide transparency windows in the near- and midwave infrared spectral region. Furthermore, their interesting thermal properties, i.e. low glass transition temperature and ability to be drawn into optical fibers, make tellurite-based glasses excellent candidates for optical fiber amplifiers. The estimation of the strength and spectral distribution of Raman gain in materials is commonly approximated from the spontaneous Raman scattering cross-section measurement. For development of tellurite-based glasses as Raman amplifiers, understanding the relationship between glass structure, vibrational …


Advanced Imaging As A Novel Approach To The Characterization Of Membranes For Microfiltration Applications, Milagro Marroquin Aug 2013

Advanced Imaging As A Novel Approach To The Characterization Of Membranes For Microfiltration Applications, Milagro Marroquin

All Dissertations

This dissertation focuses on the design, development and implementation of novel, advanced imaging protocols for the characterization of membranes in microfiltration applications. Oftentimes, membrane characterization studies are done with high resolution microscopy techniques like scanning electron microscopy or transmission electron microscopy. The results obtained by these popular imaging techniques are subject to error and their reliability might be, in some instances, compromised because they require drying and metallization of the sample; working under high vacuum and electron beam intensity; and extensive sectioning to retrieve internal information. These factors may disrupt the membrane structure or modify its features. As an alternative …


Factors Controlling Synthesis Of Iron Oxide Nanoparticles And The Effect Of Surface Charge On Magnetic Hyperthermia, Bin Qi Aug 2013

Factors Controlling Synthesis Of Iron Oxide Nanoparticles And The Effect Of Surface Charge On Magnetic Hyperthermia, Bin Qi

All Dissertations

ABSTRACT
Iron oxide nanoparticles (IONPs) have been widely studied in the theranostics application due to their promising magnetic properties, low cytotoxicity and attractive biocompatibility. Despite the numerous studies on the kinetic mechanisms of IONPs synthesis and thus the resulting size, shape and crystallinity; there are still considerable unsolved issues in quantitatively depicting the dependence between particle morphology and the reaction conditions.
To begin to explain some of these phenomena, the kinetic mechanism for the morphology and crystalline changes of IONPs with the ligand/precursor ratio in nanoparticle synthesis was investigated. During the synthesis of nanoparticles via thermal decomposition of iron precursors, …