Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 290

Full-Text Articles in Engineering

High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada May 2024

High Temperature Validation Of A Line Heat Source Technique For In-Pile Thermal Conductivity Determination, Katelyn Wada, Allyssa Bateman, Tony Valayil Varghese, Austin Fleming, Brian J. Jaques, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

In-pile instrumentation is critical for advancing operations and materials discovery in the nuclear industry. Ensuring optimal performance of sensors in high temperatures is the first step in demonstrating their viability in the harsh in-pile environment. This work demonstrates the high temperature capabilities of a line heat source and measurement technique previously shown to extract thermal conductivity of nuclear fuel sized samples within a laboratory environment at room temperature. This method uses a hybrid AC/DC measurement technique to obtain rapid measurements of the temperature dependent voltage change of a heater wire, which also acts as a resistance thermometer. Once the temperature …


Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry Mar 2024

Corrigendum To "Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1dpa" [Mater. Sci. Eng. A (2022) 144058], Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry

Materials Science and Engineering Faculty Publications and Presentations

The authors regret that after publication, they discovered that the dislocation loop number density was undercounted by a factor of 100 for both the PM-HIP and forged specimens. While this does not change the original major conclusions, this necessitates a change in the results presentation (Sections 3.2 and 4.1) and calculated hardening (Table 3, Fig. 5). Corrections to these affected sections are provided in this corrigendum.


Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas Mckibben, Michael Curtis, Olivia Maryon, Mone’T Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada Feb 2024

Formulation And Aerosol Jet Printing Of Nickel Nanoparticle Ink For High-Temperature Microelectronic Applications And Patterned Graphene Growth, Nicholas Mckibben, Michael Curtis, Olivia Maryon, Mone’T Sawyer, Maryna Lazouskaya, Josh Eixenberger, Zhangxian Deng, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Aerosol jet printing (AJP) is an advanced manufacturing technique for directly writing nanoparticle inks onto target substrates. It is an emerging reliable, efficient, and environmentally friendly fabrication route for thin film electronics and advanced semiconductor packaging. This fabrication technique is highly regarded for its rapid prototyping, the flexibility of design, and fine feature resolution. Nickel is an attractive high-temperature packaging material due to its electrical conductivity, magnetism, and corrosion resistance. In this work, we synthesized nickel nanoparticles and formulated an AJP ink, which was printed on various material surfaces. Thermal sintering experiments were performed on the samples to explore the …


Ion Irradiation And Examination Of Additive Friction Stir Deposited 316 Stainless Steel, Priyanka Agrawa, Ching-Heng Shiau, Aishani Sharma, Zhihan Hu, Megha Dubey, Yu Lu, Lin Shao, Ramprashad Prabhakaran, Yaqiao Wu, Rajiv S. Mishra Feb 2024

Ion Irradiation And Examination Of Additive Friction Stir Deposited 316 Stainless Steel, Priyanka Agrawa, Ching-Heng Shiau, Aishani Sharma, Zhihan Hu, Megha Dubey, Yu Lu, Lin Shao, Ramprashad Prabhakaran, Yaqiao Wu, Rajiv S. Mishra

Materials Science and Engineering Faculty Publications and Presentations

This study explored solid-state additive friction stir deposition (AFSD) as a modular manufacturing technology, with the aim of enabling a more rapid and streamlined on-site fabrication process for large meter-scale nuclear structural components with fully dense parts. Austenitic 316 stainless steel (SS) is an excellent candidate to demonstrate AFSD, as it is a commonly-used structural material for nuclear applications. The microstructural evolution and concomitant changes in mechanical properties after 5 MeV Fe++ ion irradiation were studied comprehensively via transmission electron microscopy and nanoindentation. AFSD-processed 316 SS led to a fine-grained and ultrafine-grained microstructure that resulted in a simultaneous increase …


Pursuing Excitonic Energy Transfer With Programmable Dna-Based Optical Breadboards, Divita Mathur, Sebastián A. Díaz, Niko Hildebrandt, Ryan D. Pensack, Bernard Yurke, Austin Biaggne, Lan Li, Joseph S. Melinger, Mario G. Ancona, William B. Knowlton, Igor L. Medintz Nov 2023

Pursuing Excitonic Energy Transfer With Programmable Dna-Based Optical Breadboards, Divita Mathur, Sebastián A. Díaz, Niko Hildebrandt, Ryan D. Pensack, Bernard Yurke, Austin Biaggne, Lan Li, Joseph S. Melinger, Mario G. Ancona, William B. Knowlton, Igor L. Medintz

Materials Science and Engineering Faculty Publications and Presentations

DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex …


Exciton Delocalization In A Fully Synthetic Dna-Templated Bacteriochlorin Dimer, Olga A. Mass, Devan R. Watt, Lance K. Patten, Ryan D. Pensack, Jeunghoon Lee, Daniel B. Turner, Bernard Yurke, William B. Knowlton Nov 2023

Exciton Delocalization In A Fully Synthetic Dna-Templated Bacteriochlorin Dimer, Olga A. Mass, Devan R. Watt, Lance K. Patten, Ryan D. Pensack, Jeunghoon Lee, Daniel B. Turner, Bernard Yurke, William B. Knowlton

Materials Science and Engineering Faculty Publications and Presentations

A bacteriochlorophyll a (Bchla) dimer is a basic functional unit in the LH1 and LH2 photosynthetic pigment–protein antenna complexes of purple bacteria, where an ordered, close arrangement of Bchla pigments—secured by noncovalent bonding to a protein template—enables exciton delocalization at room temperature. Stable and tunable synthetic analogs of this key photosynthetic subunit could lead to facile engineering of exciton-based systems such as in artificial photosynthesis, organic optoelectronics, and molecular quantum computing. Here, using a combination of synthesis and theory, we demonstrate that exciton delocalization can be achieved in a dimer of a synthetic bacteriochlorin (BC …


Heterostructure Engineering In Electrode Materials For Sodium-Ion Batteries: Recent Progress And Perspectives, Eric Gabriel, Chunrong Ma, Kincaid Graff, Angel Conrado, Dewen Hou, Hui Xiong Oct 2023

Heterostructure Engineering In Electrode Materials For Sodium-Ion Batteries: Recent Progress And Perspectives, Eric Gabriel, Chunrong Ma, Kincaid Graff, Angel Conrado, Dewen Hou, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Sodium-ion batteries (SIBs) have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems. However, SIB electrode materials, in general, have inferior performance than their lithium counterparts because Na+ is larger and heavier than Li+. Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs. We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Na+ storage and transport properties. Efficient strategies for the design and fabrication of heterostructures (in situ methods) …


Loading Direction Dependence Of Asymmetric Response Of < C+A > Pyramidal Slip In Rolled Az31 Magnesium Alloy, Yuzhi Zhu, Dewen Hou, Kaixuan Chen, Zidong Wang Oct 2023

Loading Direction Dependence Of Asymmetric Response Of < C+A > Pyramidal Slip In Rolled Az31 Magnesium Alloy, Yuzhi Zhu, Dewen Hou, Kaixuan Chen, Zidong Wang

Materials Science and Engineering Faculty Publications and Presentations

No abstract provided.


High-Sensitivity Electronic Stark Spectrometer Featuring A Laser-Driven Light Source, J. S. Huff, K. M. Duncan, C. J. Van Galen, M. S. Barclay, W. B. Knowlton, B. Yurke, P. H. Davis, D. B. Turner, R. J. Stanley, R. D. Pensack Sep 2023

High-Sensitivity Electronic Stark Spectrometer Featuring A Laser-Driven Light Source, J. S. Huff, K. M. Duncan, C. J. Van Galen, M. S. Barclay, W. B. Knowlton, B. Yurke, P. H. Davis, D. B. Turner, R. J. Stanley, R. D. Pensack

Materials Science and Engineering Faculty Publications and Presentations

We report developmental details of a high-sensitivity Stark absorption spectrometer featuring a laser-driven light source. The light source exhibits intensity fluctuations of ∼0.3% over timescales ranging from 1 min to 12 h, minimal drift (≤ 0.1%/h), and very little 1/f noise at frequencies greater than 200 Hz, which are comparable to or better than an arc-driven light source. Additional features of the spectrometer include balanced detection with multiplex sampling, which yielded lower noise in A, and constant wavelength or wavenumber (energy) spectral bandpass modes. We achieve noise amplitudes of ∼7 × 10−4 and ∼6 × 10−6 …


Correlative Imaging Of Three-Dimensional Cell Culture On Opaque Bioscaffolds For Tissue Engineering Applications, Mone’T Sawyer, Josh Eixenberger, Olivia Nielson, Jacob Manzi, Cadré Francis, Raquel Montenegro-Brown, Harish Subbaraman, David Estrada Sep 2023

Correlative Imaging Of Three-Dimensional Cell Culture On Opaque Bioscaffolds For Tissue Engineering Applications, Mone’T Sawyer, Josh Eixenberger, Olivia Nielson, Jacob Manzi, Cadré Francis, Raquel Montenegro-Brown, Harish Subbaraman, David Estrada

Materials Science and Engineering Faculty Publications and Presentations

Three-dimensional (3D) tissue engineering (TE) is a prospective treatment that can be used to restore or replace damaged musculoskeletal tissues, such as articular cartilage. However, current challenges in TE include identifying materials that are biocompatible and have properties that closely match the mechanical properties and cellular microenvironment of the target tissue. Visualization and analysis of potential 3D porous scaffolds as well as the associated cell growth and proliferation characteristics present additional problems. This is particularly challenging for opaque scaffolds using standard optical imaging techniques. Here, we use graphene foam (GF) as a 3D porous biocompatible substrate, which is scalable, reproducible, …


Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard Sep 2023

Intrinsic And Atomic Layer Etching Enhanced Area-Selective Atomic Layer Deposition Of Molybdenum Disulfide Thin Films, Jake Soares, Wesley Jen, John D. Hues, Drew Lysne, Jesse Wensel, Steven M. Hues, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

For continual scaling in microelectronics, new processes for precise high volume fabrication are required. Area-selective atomic layer deposition (ASALD) can provide an avenue for self-aligned material patterning and offers an approach to correct edge placement errors commonly found in top-down patterning processes. Two-dimensional transition metal dichalcogenides also offer great potential in scaled microelectronic devices due to their high mobilities and few-atom thickness. In this work, we report ASALD of MoS2 thin films by deposition with MoF6 and H2S precursor reactants. The inherent selectivity of the MoS2 atomic layer deposition (ALD) process is demonstrated by growth …


Investigation Of Deformation Behavior Of Additively Manufactured Aisi 316l Stainless Steel With In Situ Micro-Compression Testing, Fei Teng, Ching-Heng Shiau, Cheng Sun, Robert C. O'Brien, Michael D. Mcmurtrey Sep 2023

Investigation Of Deformation Behavior Of Additively Manufactured Aisi 316l Stainless Steel With In Situ Micro-Compression Testing, Fei Teng, Ching-Heng Shiau, Cheng Sun, Robert C. O'Brien, Michael D. Mcmurtrey

Materials Science and Engineering Faculty Publications and Presentations

Additive manufacturing techniques are being used more and more to perform the precise fabrication of engineering components with complex geometries. The heterogeneity of additively manufactured microstructures deteriorates the mechanical integrity of products. In this paper, we printed AISI 316L stainless steel using the additive manufacturing technique of laser metal deposition. Both single-phase and dual-phase substructures were formed in the grain interiors. Electron backscatter diffraction and energy-dispersive X-ray spectroscopy indicate that Si, Mo, S, Cr were enriched, while Fe was depleted along the substructure boundaries. In situ micro-compression testing was performed at room temperature along the [001] orientation. The dual-phase substructures …


Leveraging Steric Moieties For Kinetic Control Of Dna Strand Displacement Reactions, Drew Lysne, Tim Hachigian, Chris Thachuk, Jeunghoon Lee, Elton Graugnard Aug 2023

Leveraging Steric Moieties For Kinetic Control Of Dna Strand Displacement Reactions, Drew Lysne, Tim Hachigian, Chris Thachuk, Jeunghoon Lee, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

DNA strand displacement networks are a critical part of dynamic DNA nanotechnology and are proven primitives for implementing chemical reaction networks. Precise kinetic control of these networks is important for their use in a range of applications. Among the better understood and widely leveraged kinetic properties of these networks are toehold sequence, length, composition, and location. While steric hindrance has been recognized as an important factor in such systems, a clear understanding of its impact and role is lacking. Here, a systematic investigation of steric hindrance within a DNA toehold-mediated strand displacement network was performed through tracking kinetic reactions of …


Thermomechanical Properties Of Neutron Irradiated Al3Hf-Al Thermal Neutron Absorber Materials, Donna Post Guillen, Mychailo B. Toloczko, Ramprashad Prabhakaran, Yuanyuan Zhu, Yu Lu, Yaqiao Wu Aug 2023

Thermomechanical Properties Of Neutron Irradiated Al3Hf-Al Thermal Neutron Absorber Materials, Donna Post Guillen, Mychailo B. Toloczko, Ramprashad Prabhakaran, Yuanyuan Zhu, Yu Lu, Yaqiao Wu

CAES Energy Policy Institute Faculty Publications and Presentations

A thermal neutron absorber material composed of Al3Hf particles in an aluminum matrix is under development for the Advanced Test Reactor. This metal matrix composite was fabricated via hot pressing of high-purity aluminum and micrometer-size Al3Hf powders at volume fractions of 20.0, 28.4, and 36.5%. Room temperature tensile and hardness testing of unirradiated specimens revealed a linear relationship between volume fraction and strength, while the tensile data showed a strong decrease in elongation between the 20 and 36.5% volume fraction materials. Tensile tests conducted at 200 °C on unirradiated material revealed similar trends. Evaluations were then …


Catalyzed Oxidation Of Ig-110 Nuclear Graphite By Simulated Fission Products Ag And Pd Nanoparticles, Junhua Jiang, John Stempien, Yaqiao Wu Jun 2023

Catalyzed Oxidation Of Ig-110 Nuclear Graphite By Simulated Fission Products Ag And Pd Nanoparticles, Junhua Jiang, John Stempien, Yaqiao Wu

Materials Science and Engineering Faculty Publications and Presentations

To evaluate the stability of nuclear materials in high temperature gas reactors under air ingress conditions, catalytic oxidation of IG-110 graphite by two simulated fission products, metallic Pd and Ag, was studied in oxidative atmosphere and at temperatures up to 1000 °C using an integrated furnace, mass spectroscopy and infrared spectroscopy system. Transmission electron microscopy and X-ray diffraction studies show that Pd and Ag nanoparticles were successfully introduced onto powdery IG-110 graphite through an impregnation and subsequent heat-treatment process. The combined mass spectroscopy and infrared spectroscopy methods allow simultaneous analysis of two gaseous products, CO and CO2, and …


Mechanical Testing Data From Neutron Irradiations Of Pm-Hip And Conventionally Manufactured Nuclear Structural Alloys, Yaqiao Wu Jun 2023

Mechanical Testing Data From Neutron Irradiations Of Pm-Hip And Conventionally Manufactured Nuclear Structural Alloys, Yaqiao Wu

Materials Science and Engineering Faculty Publications and Presentations

This article presents the comprehensive mechanical testing data archive from a neutron irradiation campaign of nuclear structural alloys fabricated by powder metallurgy with hot isostatic pressing (PM-HIP). The irradiation campaign was designed to facilitate a direct comparison of PM-HIP to conventional casting or forging. Five common nuclear structural alloys were included in the campaign: 316L stainless steel, SA508 pressure vessel steel, Grade 91 ferritic steel, and Ni-base alloys 625 and 690. Irradiations were carried out in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to target doses of 1 and 3 displacements per atom (dpa) at target temperatures …


Decoding The Hydrodynamic Properties Of Microscale Helical Propellers From Brownian Fluctuations, Bernard Yurke May 2023

Decoding The Hydrodynamic Properties Of Microscale Helical Propellers From Brownian Fluctuations, Bernard Yurke

Materials Science and Engineering Faculty Publications and Presentations

The complex motility of bacteria, ranging from single-swimmer behaviors such as chemotaxis to collective dynamics, including biofilm formation and active matter phenomena, is driven by their microscale propellers. Despite extensive study of swimming flagellated bacteria, the hydrodynamic properties of their helical-shaped propellers have never been directly measured. The primary challenges to directly studying microscale propellers are 1) their small size and fast, correlated motion, 2) the necessity of controlling fluid flow at the microscale, and 3) isolating the influence of a single propeller from a propeller bundle. To solve the outstanding problem of characterizing the hydrodynamic properties of these propellers, …


Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem May 2023

Structure-Property-Processing Analysis Of Graphene Bioscaffolds For Viability And Differentiation Of C2c12 Cells, Lynn Karriem

Boise State University Theses and Dissertations

We investigated the structure – property – processing correlation of graphene bioscaffolds produced using three different methods. Bioscaffolds were prepared by chemical vapor deposition (CVD), sublimation of Silicon Carbide (SiC), and printed solvent assisted exfoliated graphene ink. To gain insight into the roughness and topography of graphene, AFM was performed on each bioscaffold. Raman spectroscopy mapping demonstrated differences in the I2D/IG ratio for each scaffold. Young’s modulus was determined by nanoindentation and indicated that epitaxial graphene had the highest average stiffness, followed by CVD, with printed graphene demonstrating the lowest average stiffness. To investigate the biocompatibility of …


Effect Of Substituent Location On The Relationship Between The Transition Dipole Moments, Difference Static Dipole, And Hydrophobicity In Squaraine Dyes For Quantum Information Devices, Maia Ketteridge, Austin Biaggne, Ryan Rau, German Barcenas, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li Mar 2023

Effect Of Substituent Location On The Relationship Between The Transition Dipole Moments, Difference Static Dipole, And Hydrophobicity In Squaraine Dyes For Quantum Information Devices, Maia Ketteridge, Austin Biaggne, Ryan Rau, German Barcenas, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

Aggregates of organic dyes that exhibit excitonic coupling have a wide array of applications, including medical imaging, organic photovoltaics, and quantum information devices. The optical properties of a dye monomer, as a basis of dye aggregate, can be modified to strengthen excitonic coupling. Squaraine (SQ) dyes are attractive for those applications due to their strong absorbance peak in the visible range. While the effects of substituent types on the optical properties of SQ dyes have been previously examined, the effects of various substituent locations have not yet been investigated. In this study, density functional theory (DFT) and time-dependent density functional …


Closed-Loop Recyclable Plastics From Poly(Ethyl Cyanoacrylate), Allison J. Christy, Scott T. Phillips Mar 2023

Closed-Loop Recyclable Plastics From Poly(Ethyl Cyanoacrylate), Allison J. Christy, Scott T. Phillips

Materials Science and Engineering Faculty Publications and Presentations

Ethyl cyanoacrylate is a highly reactive monomer that has been used nearly exclusively to make Super Glue and related fast-setting adhesives. Here, we describe transformation of this highly abundant, readily available monomer into a closed-loop recyclable plastic that could supplant currently used (and often unrecycled/unrecyclable) plastics, such as poly(styrene). We report polymerization conditions, plastic-processing methods, and plastic-recycling protocols for poly(ethyl cyanoacrylate) plastics that make the Super Glue monomer a viable starting material for a next generation of closed-loop recyclable plastics. The processes described are scalable, and the plastics can be recycled in a closed-loop process with >90% yields, even when …


Impact Of Population Based Indoor Residual Spraying With And Without Mass Drug Administration With Dihydroartemisinin-Piperaquine On Malaria Prevalence In A High Transmission Setting: A Quasi-Experimental Controlled Before-And-After Trial In Northeastern Uganda, Richard C. Elliott Feb 2023

Impact Of Population Based Indoor Residual Spraying With And Without Mass Drug Administration With Dihydroartemisinin-Piperaquine On Malaria Prevalence In A High Transmission Setting: A Quasi-Experimental Controlled Before-And-After Trial In Northeastern Uganda, Richard C. Elliott

Materials Science and Engineering Faculty Publications and Presentations

Background: Declines in malaria burden in Uganda have slowed. Modelling predicts that indoor residual spraying (IRS) and mass drug administration (MDA), when co-timed, have synergistic impact. This study investigated additional protective impact of population-based MDA on malaria prevalence, if any, when added to IRS, as compared with IRS alone and with standard of care (SOC).

Methods: The 32-month quasi-experimental controlled before-and-after trial enrolled an open cohort of residents (46,765 individuals, 1st enumeration and 52,133, 4th enumeration) of Katakwi District in northeastern Uganda. Consented participants were assigned to three arms based on residential subcounty at study start: MDA+IRS, IRS, SOC. IRS …


Molecular Dynamic Studies Of Dye–Dye And Dye–Dna Interactions Governing Excitonic Coupling In Squaraine Aggregates Templated By Dna Holliday Junctions, German Barcenas, Austin Biaggne, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li Feb 2023

Molecular Dynamic Studies Of Dye–Dye And Dye–Dna Interactions Governing Excitonic Coupling In Squaraine Aggregates Templated By Dna Holliday Junctions, German Barcenas, Austin Biaggne, Olga A. Mass, William B. Knowlton, Bernard Yurke, Lan Li

Materials Science and Engineering Faculty Publications and Presentations

Dye molecules, arranged in an aggregate, can display excitonic delocalization. The use of DNA scaffolding to control aggregate configurations and delocalization is of research interest. Here, we applied Molecular Dynamics (MD) to gain an insight on how dye–DNA interactions affect excitonic coupling between two squaraine (SQ) dyes covalently attached to a DNA Holliday junction (HJ). We studied two types of dimer configurations, i.e., adjacent and transverse, which differed in points of dye covalent attachments to DNA. Three structurally different SQ dyes with similar hydrophobicity were chosen to investigate the sensitivity of excitonic coupling to dye placement. Each dimer configuration was …


Probing Dna Structural Heterogeneity By Identifying Conformational Subensembles Of A Bicovalently Bound Cyanine Dye, Matthew S. Barclay, Azhad U. Chowdhury, Austin Biaggne, Jonathan S. Huff, Nicholas D. Wright, Paul H. Davis, Lan Li, William B. Knowlton, Bernard Yurke, Ryan D. Pensack, Daniel B. Turner Jan 2023

Probing Dna Structural Heterogeneity By Identifying Conformational Subensembles Of A Bicovalently Bound Cyanine Dye, Matthew S. Barclay, Azhad U. Chowdhury, Austin Biaggne, Jonathan S. Huff, Nicholas D. Wright, Paul H. Davis, Lan Li, William B. Knowlton, Bernard Yurke, Ryan D. Pensack, Daniel B. Turner

Materials Science and Engineering Faculty Publications and Presentations

DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA–Cy5), double-stranded DNA (dsDNA–Cy5), and Holliday junction DNA (HJ–DNA–Cy5). A line shape analysis of the 2D spectra reveals a strong excitation–emission correlation present in only the dsDNA–Cy5 complex, which is …


Elucidating The Synergic Effect In Nanoscale Mos2/Tio2 Heterointerface For Na-Ion Storage, Chunrong Ma, Dewen Hou, Jiali Jiang, Yanchen Fan, Xiang Li, Tianyi Li, Zifeng Ma, Haoxi Ben, Hui Xiong Dec 2022

Elucidating The Synergic Effect In Nanoscale Mos2/Tio2 Heterointerface For Na-Ion Storage, Chunrong Ma, Dewen Hou, Jiali Jiang, Yanchen Fan, Xiang Li, Tianyi Li, Zifeng Ma, Haoxi Ben, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Interface engineering in electrode materials is an attractive strategy for enhancing charge storage, enabling fast kinetics, and improving cycling stability for energy storage systems. Nevertheless, the performance improvement is usually ambiguously ascribed to the “synergetic effect”, the fundamental understanding toward the effect of the interface at molecular level in composite materials remains elusive. In this work, a well-defined nanoscale MoS2/TiO2 interface is rationally designed by immobilizing TiO2 nanocrystals on MoS2 nanosheets. The role of heterostructure interface between TiO2 and MoS2 by operando synchrotron X-ray diffraction (sXRD), solid-state nuclear magnetic resonance, and density functional …


Nucleation And Growth Of Molybdenum Disulfide Grown By Thermal Atomic Layer Deposition On Metal Oxides, Jake Soares, Steven Letourneau, Matthew Lawson, Anil U. Mane, Yu Lu, Yaqiao Wu, Steven M. Hues, Lan Li, Jeffrey W. Elam, Elton Graugnard Dec 2022

Nucleation And Growth Of Molybdenum Disulfide Grown By Thermal Atomic Layer Deposition On Metal Oxides, Jake Soares, Steven Letourneau, Matthew Lawson, Anil U. Mane, Yu Lu, Yaqiao Wu, Steven M. Hues, Lan Li, Jeffrey W. Elam, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

To enable greater control over thermal atomic layer deposition (ALD) of molybdenum disulfide (MoS2), here we report studies of the reactions of molybdenum hexafluoride (MoF6) and hydrogen sulfide (H2S) with metal oxide substrates from nucleation to few-layer films. In situ quartz crystal microbalance experiments performed at 150, 200, and 250 °C revealed temperature-dependent nucleation behavior of the MoF6 precursor, which is attributed to variations in surface hydroxyl concentration with temperature. In situ Fourier transform infrared spectroscopy coupled with ex situ x-ray photoelectron spectroscopy (XPS) indicated the presence of molybdenum oxide and molybdenum oxyfluoride …


Thermal Atomic Layer Etching Of Mos2 Using Mof6 And H2O, Jake Soares, Anil U. Mane, Devika Choudhury, Steven Letourneau, Steven M. Hues, Jeffrey W. Elam, Elton Graugnard Dec 2022

Thermal Atomic Layer Etching Of Mos2 Using Mof6 And H2O, Jake Soares, Anil U. Mane, Devika Choudhury, Steven Letourneau, Steven M. Hues, Jeffrey W. Elam, Elton Graugnard

Materials Science and Engineering Faculty Publications and Presentations

Two-dimensional (2D) layered materials offer unique properties that make them attractive for continued scaling in electronic and optoelectronic device applications. Successful integration of 2D materials into semiconductor manufacturing requires high-volume and high-precision processes for deposition and etching. Several promising large-scale deposition approaches have been reported for a range of 2D materials, but fewer studies have reported removal processes. Thermal atomic layer etching (ALE) is a scalable processing technique that offers precise control over isotropic material removal. In this work, we report a thermal ALE process for molybdenum disulfide (MoS2). We show that MoF6 can be used as …


Heteroepitaxy Of Gasb On Gaas (111)A For Electron Transport Studies, Madison Drake Dec 2022

Heteroepitaxy Of Gasb On Gaas (111)A For Electron Transport Studies, Madison Drake

Boise State University Theses and Dissertations

III-V semiconductors grown by molecular beam epitaxy (MBE) on (111) surfaces have some interesting electronic properties. For certain materials with a (111)-orientation, the Γ- and L-valleys are reasonably close in energy. This means that it may be possible to take advantage of electron conduction in the L- and Γ-valleys at the same time, allowing us to overcome the so-called “density-of-states bottleneck,” and enable transistors with large drive currents.1 We have investigated this phenomenon in GaSb- and InAs-based 2D electron gases for which the electron effective masses are low.

However, growth of materials with a (111) orientation is typically more …


Deep Learning Of Microstructures, Amir Abbas Kazemzadeh Farizhandi Dec 2022

Deep Learning Of Microstructures, Amir Abbas Kazemzadeh Farizhandi

Boise State University Theses and Dissertations

The internal structure of materials also called the microstructure plays a critical role in the properties and performance of materials. The chemical element composition is one of the most critical factors in changing the structure of materials. However, the chemical composition alone is not the determining factor, and a change in the production process can also significantly alter the materials' structure. Therefore, many efforts have been made to discover and improve production methods to optimize the functional properties of materials. The most critical challenge in finding materials with enhanced properties is to understand and define the salient features of the …


Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1 Dpa, Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry Nov 2022

Comparing Structure-Property Evolution For Pm-Hip And Forged Alloy 625 Irradiated With Neutrons To 1 Dpa, Caleb Clement, Sowmya Panuganti, Patrick H. Warren, Yangyang Zhao, Yu Lu, Katelyn Wheeler, David Frazer, Donna P. Guillen, David W. Gandy, Janelle P. Wharry

Materials Science and Engineering Faculty Publications and Presentations

The nuclear power industry has growing interest in qualifying powder metallurgy with hot isostatic pressing (PM-HIP) to replace traditional alloy fabrication methods for reactor structural components. But there is little known about the response of PM-HIP alloys to reactor conditions. This study directly compares the response of PM-HIP to forged Ni-base Alloy 625 under neutron irradiation doses ∼0.5–1 displacements per atom (dpa) at temperatures ranging ∼321–385 °C. Post-irradiation examination involves microstructure characterization, ASTM E8 uniaxial tensile testing, and fractography. Up through 1 dpa, PM-HIP Alloy 625 appears more resistant to irradiation-induced cavity nucleation than its forged counterpart, and consequently experiences …


Perturbative Theoretical Model Of Electronic Transient Circular Dichroism Spectroscopy Of Molecular Aggregates, Paul C. Arpin, Daniel B. Turner Oct 2022

Perturbative Theoretical Model Of Electronic Transient Circular Dichroism Spectroscopy Of Molecular Aggregates, Paul C. Arpin, Daniel B. Turner

Materials Science and Engineering Faculty Publications and Presentations

A chiral analog of transient absorption spectroscopy, transient circular dichroism (TCD) spectroscopy is an emerging time-resolved method. Both spectroscopic methods can probe the electronic transitions of a sample, and TCD is additionally sensitive to the dynamic aspects of chirality, such as those induced by molecular excitons. Here, we develop a theoretical description of TCD for electronic multi-level models in which the pump pulse is linearly polarized and probe pulse is alternately left- and right-circularly polarized. We derive effective response functions analogous to those often used to describe other four-wave mixing methods and then simulate and analyze TCD spectra for three …