Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Boise State University

Genetics

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Tuning Between Quenching And Energy Transfer In Dna-Templated Heterodimer Aggregates, Azhad U. Chowdhury, Jonathan S. Huff, Matthew S. Barclay, Lance K. Patten, Aaron Sup, Natalya Hallstrom, Jeunghoon Lee, Paul H. Davis, Daniel B. Turner, Bernard Yurke, William B. Knowlton, Ryan D. Pensack Mar 2022

Tuning Between Quenching And Energy Transfer In Dna-Templated Heterodimer Aggregates, Azhad U. Chowdhury, Jonathan S. Huff, Matthew S. Barclay, Lance K. Patten, Aaron Sup, Natalya Hallstrom, Jeunghoon Lee, Paul H. Davis, Daniel B. Turner, Bernard Yurke, William B. Knowlton, Ryan D. Pensack

Materials Science and Engineering Faculty Publications and Presentations

Molecular excitons, which propagate spatially via electronic energy transfer, are central to numerous applications including light harvesting, organic optoelectronics, and nanoscale computing; they may also benefit applications such as photothermal therapy and photoacoustic imaging through the local generation of heat via rapid excited-state quenching. Here we show how to tune between energy transfer and quenching for heterodimers of the same pair of cyanine dyes by altering their spatial configuration on a DNA template. We assemble “transverse” and “adjacent” heterodimers of Cy5 and Cy5.5 using DNA Holliday junctions. We find that the transverse heterodimers exhibit optical properties consistent with excitonically interacting …


Influence Of Hydrophobicity On Excitonic Coupling In Dna-Templated Indolenine Squaraine Dye Aggregates, Olga A. Mass, Christopher K. Wilson, German Barcenas, Lan Li, Bernard Yurke, William B. Knowlton, Ryan D. Pensack, Jeunghoon Lee Feb 2022

Influence Of Hydrophobicity On Excitonic Coupling In Dna-Templated Indolenine Squaraine Dye Aggregates, Olga A. Mass, Christopher K. Wilson, German Barcenas, Lan Li, Bernard Yurke, William B. Knowlton, Ryan D. Pensack, Jeunghoon Lee

Materials Science and Engineering Faculty Publications and Presentations

Control over the strength of excitonic coupling in molecular dye aggregates is a substantial factor for the development of technologies such as light harvesting, optoelectronics, and quantum computing. According to the molecular exciton model, the strength of excitonic coupling is inversely proportional to the distance between dyes. Covalent DNA templating was proved to be a versatile tool to control dye spacing on a subnanometer scale. To further expand our ability to control photophysical properties of excitons, here, we investigated the influence of dye hydrophobicity on the strength of excitonic coupling in squaraine aggregates covalently templated by DNA Holliday Junction (DNA …


Customizable Aptamer Transducer Network Designed For Feed-Forward Coupling, Tim Hachigian, Drew Lysne, Elton Graugnard, Jeunghoon Lee Oct 2021

Customizable Aptamer Transducer Network Designed For Feed-Forward Coupling, Tim Hachigian, Drew Lysne, Elton Graugnard, Jeunghoon Lee

Materials Science and Engineering Faculty Publications and Presentations

Solution-based biosensors that utilize aptamers have been engineered in a variety of formats to detect a range of analytes for both medical and environmental applications. However, since aptamers have fixed base sequences, incorporation of aptamers into DNA strand displacement networks for feed-forward signal amplification and processing requires significant redesign of downstream DNA reaction networks. We designed a novel aptamer transduction network that releases customizable output domains, which can then be used to initiate downstream strand displacement reaction networks without any sequence redesign of the downstream reaction networks. In our aptamer transducer (AT), aptamer input domains are independent of output domains …


Excited-State Lifetimes Of Dna-Templated Cyanine Dimer, Trimer, And Tetramer Aggregates: The Role Of Exciton Delocalization, Dye Separation, And Dna Heterogeneity, Jonathan S. Huff, Daniel B. Turner, Olga A. Mass, Lance K. Patten, Christopher K. Wilson, Simon K. Roy, Matthew S. Barclay, Bernard Yurke, William B. Knowlton, Paul H. Davis, Ryan D. Pensack Sep 2021

Excited-State Lifetimes Of Dna-Templated Cyanine Dimer, Trimer, And Tetramer Aggregates: The Role Of Exciton Delocalization, Dye Separation, And Dna Heterogeneity, Jonathan S. Huff, Daniel B. Turner, Olga A. Mass, Lance K. Patten, Christopher K. Wilson, Simon K. Roy, Matthew S. Barclay, Bernard Yurke, William B. Knowlton, Paul H. Davis, Ryan D. Pensack

Materials Science and Engineering Faculty Publications and Presentations

DNA-templated molecular (dye) aggregates are a novel class of materials that have garnered attention in a broad range of areas including light harvesting, sensing, and computing. Using DNA to template dye aggregation is attractive due to the relative ease with which DNA nanostructures can be assembled in solution, the diverse array of nanostructures that can be assembled, and the ability to precisely position dyes to within a few Angstroms of one another. These factors, combined with the programmability of DNA, raise the prospect of designer materials custom tailored for specific applications. Although considerable progress has been made in characterizing the …