Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 96

Full-Text Articles in Engineering

2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez Nov 2020

2 Degree Of Freedom Robotic Leg, Oded Tzori, Henry Terrell, Adan Martinez

Mechanical Engineering

Professor Xing, an assistant professor at Cal Poly, proposed the 2 DOF Robotic Leg project for this quarter’s senior project class. The project is to build a robotic leg attached at the hip to a stand, which will be used as a teaching tool and eventually help develop Cal Poly’s very own robotic quadruped. Since this project has multiple uses after its completion, there are multiple customers that it must perform well for: the Cal Poly Mechanical Engineering (ME) Department, the ME Lab instructors, and the students. The Scope of Work (Sections 2 & 3) is composed of 2 main …


Formula Sae Monocoque Chassis Development, Kc Egger, Brian Ford, Kyle Nagao, Neal Sharma, Donovan Zusalim Aug 2020

Formula Sae Monocoque Chassis Development, Kc Egger, Brian Ford, Kyle Nagao, Neal Sharma, Donovan Zusalim

Mechanical Engineering

Formula SAE is a collegiate competition hosted by SAE International with the primary goal being to design, manufacture, and race an open wheel race car. The Cal Poly Racing Formula SAE team strives for improvement every race season and has remained competitive as a result. The 2019-2020 management team determined that further research and development towards the chassis would yield the greatest performance benefit for future seasons, as the previous chassis platform limited packaging and mounting options for vehicle subsystems which interfaced with the chassis.

A redesign of the Cal Poly Racing Formula SAE team’s carbon fiber reinforced polymer monocoque …


Cp Check Valve Design, Alec B. Der Matoian, Jessica M. Dent, Skylar M. Tusting Jun 2020

Cp Check Valve Design, Alec B. Der Matoian, Jessica M. Dent, Skylar M. Tusting

Mechanical Engineering

This report is to serve as a final design review and update to the project sponsors at Zurn Wilkins for the Check Valve Design Senior Project. The senior project team was tasked with improving upon the design of Zurn Wilkins’ backflow prevention assembly for small diameter pipes by reducing the pressure loss created by the check valves within the double check backflow assembly. The information contained in this report builds off the information contained in the Critical Design Report (CDR), as well as feedback and further investigation suggested during an Intermediary Design Review. Based on conclusions from the CDR, our …


Vibration Isolation System, Bradley Y. Kwan, Bailey Groh, Max Wu, Nicole Yen Jun 2020

Vibration Isolation System, Bradley Y. Kwan, Bailey Groh, Max Wu, Nicole Yen

Mechanical Engineering

The Vibration Isolation System Senior Project is a collaborative group project between its sponsor, Maxar Technologies, and a team of students from Cal Poly - SLO to effectively design, manufacture, and test a structural assembly for satellites, isolating vibrations during launch and orbit conditions. After initial sponsor contact, requirements and needs were set which dictated deliverables for the senior project group. The group performed analyses to validate all design decisions, including a modified concept and design direction, selection of a prototype viscoelastic damping material, preliminary testing to validate design specifications, and detailed design and analysis toward a finalized design. Instead …


Heavenly Bodies Rsvp, Justin Tyler Spitzer, Allison Jean Turnbaugh, Jack William Boulware, Braden Alex Lockwood Jun 2020

Heavenly Bodies Rsvp, Justin Tyler Spitzer, Allison Jean Turnbaugh, Jack William Boulware, Braden Alex Lockwood

Mechanical Engineering

The purpose of the Heavenly Bodies RSVP project was to design and fabricate planet props, as well as a mechanism by which they could be raised and lowered in California Polytechnic State University’s Pavilion theater. The project team was comprised of four fourth year mechanical engineering students: Allison Turnbaugh, Braden Lockwood, Jack Boulware, and Justin Spitzer. We conducted extensive research to determine the ideal solution for the design problem brought to us by our sponsor. In our analysis, we discovered that the most important aspects of our design were the absolute reliability of the system, fire retardant material selection, and …


Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey Jun 2020

Spring Loaded Camming Device, Jared S. Christner, Kaitlin O. Deherrera, Ryan W. Edwards, John S. Hickey

Mechanical Engineering

Spring loaded camming devices or “cams” are used in traditional rock climbing as a means of active fall protection. Climbers place cams in cracks and fissures in the rock wall. The cam’s lobes press against the walls, locking it in place, anchoring the climber in case of a fall. Currently, there is a lack of large cams on the market. Only two small companies produce cams that are usable in cracks 6.5 inches wide and larger, however their designs are either too heavy and/or lack features to be comfortable. We are a group of mechanical engineering students at Cal Poly …


Elevate Dental, Connor Merrick, Everett Johnson, Jonah Holbrook Jun 2020

Elevate Dental, Connor Merrick, Everett Johnson, Jonah Holbrook

Mechanical Engineering

During a dental procedure, patients are often required to have a bite block placed in their mouths to keep them open for the duration of their procedure. These can be very uncomfortable for patients due to lack of properly-fitting sizes. This project presents an alternative fully adjustable bite block that is affordable, comfortable, and easy to use for dental personnel.The bite block is a two piece side loading design that uses interlocking teeth to supply a range of five sizes.


Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop Jun 2020

Miniaturized Ultraviolet Imager Phase Iii, Bradley D. Albright, Nicolas A. Armenta, Colin W. Harrop

Mechanical Engineering

This document details the work to date, June 9, 2020, done by the Cal Poly Mechanical Engineering senior project team, Miniaturized Ultraviolet Imager: Phase III (MUVI III), sponsored by the University of California, Berkeley – Space Sciences Laboratory (UCB SSL). MUVI III is the third senior project team of an ongoing design, MUVI: the prototype of a 2U sized CubeSat intended to capture aurora images in the ionosphere. The first team, MUVI I, finished development of the UV imager. The second team, MUVI II, designed the mirror mounting and deployable door mechanisms. The goal of MUVI phase III is to …


Cal Poly Supermileage Dynamometer, Jacob Randall, Nate Deffenbaugh, Kyle Milgram Mar 2020

Cal Poly Supermileage Dynamometer, Jacob Randall, Nate Deffenbaugh, Kyle Milgram

Mechanical Engineering

Our senior project involves designing a chassis dynamometer capable of simulating variable loads for the Cal Poly Supermileage Vehicle (SMV) team. The chassis dynamometer we are developing uses an alternator to develop additional resistance that the vehicle will have to overcome while testing. To implement a control system for the variable load, we use an Arduino Nano paired with multiple sensors and drivers. This control system allows the user to select different levels of resistance that correlate with different road grades. We designed a custom Printed Circuit Board (PCB) that will contain all the electrical components needed for the control …


Deployable Cover For Cubesat Fuv Imager, Edwin J. Rainville, Patrick J. Rainville, Jeff Wagner Dec 2019

Deployable Cover For Cubesat Fuv Imager, Edwin J. Rainville, Patrick J. Rainville, Jeff Wagner

Mechanical Engineering

The goal is to develop a deployable cover for a far ultraviolet imager cube satellite that will be used to map the earth’s auroras in the ionosphere. The deployable cover is used to protect the Far Ultra-Violet (FUV) sensor and lenses, house two mirrors which are used to filter unwanted light and expose optics when deployed. The deployable cover consists of a door, an actuator, a lockout mechanism, and an “open position” indicator. This project also includes designing a fixture for testing the optical alignment of the deployable cover after launch and during orbital conditions. The subassembly is required to …


Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine Mccool, Brannon Smudz Dec 2019

Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine Mccool, Brannon Smudz

Mechanical Engineering

Skiing is a sport enjoyed by millions of people every year, yet ski boots are very uncomfortable and cost- prohibitive, resulting in a low conversion rate of first-time skiers to lifetime skiers. Additionally, Alpine Touring (AT) is seeing a surge in popularity as ski resorts become more expensive, but few companies are developing affordable products in this realm. Mad Jack Snow Sports has developed a product that they believe addresses some of the main issues associated with skiing, but they want to develop their product line further. The problem statement and scope state that the purpose of this project is …


Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz Jun 2019

Fluid Power Vehicle Challenge - The Incompressibles - Final Design Report, Nicholas Gholdoian, Russell Posin, David Vitt, Alex Knickerbocker, Kyle Franck, Julian Rodkiewicz

Mechanical Engineering

This report provides a comprehensive description of the research, analysis and design work that The Incompressibles have completed thus far in the senior project process. This document includes all the work that The Incompressibles have completed for the team’s Preliminary Design Review (PDR), Critical Design Review (CDR), the work leading up to the 2019 FPVC competiton and the competition results. This report includes the initial research that the team completed for the fluid power competition, first iterations of designs, final iterations of designs, manufacturing results and processes, and finally testing and results from competition. With a new design for the …


Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith Jun 2019

Human Powered Vehicle Trainer, Nicholas Hung Nguyen, Gregory Reece Bridges, Jacinta Garcia, Mitchell Sidney Smith

Mechanical Engineering

This Final Design Review (FDR) document describes the final design and completed prototype of a Mechanical Engineering senior project team at California Polytechnic State University, San Luis Obispo. The project goal is to create an adjustable human powered vehicle training bike for George Leone that allows a rider to gain confidence with the unique reclined bike geometry ahead of the World Human Powered Speed Challenge at Battle Mountain, Nevada. This document outlines the customer’s needs and technical research performed which together determine the project’s scope and engineering specifications. Next, we present the initial idea generation process and its results, along …


Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté May 2019

Final Design Report For Human Powered Vehicle Drivetrain Project, Derek Fromm, Luke Opitz, Michael Juri, Olivier Côté

Mechanical Engineering

The Cal Poly Human Powered Vehicle Club is building a bike to surpass 61.3 mph in 2019. The club and their mentor, George Leone, have proposed a senior project to design, build, and test the drivetrain for this year’s human powered vehicle. Research into human powered vehicles and their drivetrains has shown that the power that a rider can output and the efficiency at which the rider can pedal depend extensively on the design of the drivetrain. Despite the existence of standard bicycle drivetrain designs, the senior project team has found that the best design to meet the club’s requirements …


Framed Human Powered Vehicle Frame, Keyanna Brielle Henderson, Brendon Howard Morey, Kyra Noelle Schmidt, Austin Patrick Henry May 2019

Framed Human Powered Vehicle Frame, Keyanna Brielle Henderson, Brendon Howard Morey, Kyra Noelle Schmidt, Austin Patrick Henry

Mechanical Engineering

The following is the Final Design Review (FDR) Report for Framed, a team tasked with designing and fabricating the frame of the 2018-2019 Cal Poly Human Powered Vehicle (HPV) Club bike. The bike is to be raced at the 2019 World Human Powered Speed Challenge in Battle Mountain, Nevada with the goal of breaking the American collegiate speed record. The purpose of the FDR Report is to introduce the project’s background and objectives, discuss the final design, and present the results of manufacturing and testing. Prior to beginning work on the design of the frame, the group conducted extensive research …


High Strollers, Braeden Hammond, Morley Perrin, Reid Bartels, Juan Rodriguez May 2019

High Strollers, Braeden Hammond, Morley Perrin, Reid Bartels, Juan Rodriguez

Mechanical Engineering

This report documents the final product of Jonathon’s new lightweight stroller. The Mechanical Engineering team from Cal Poly, High Strollers, began the project to create a lightweight stroller for the project sponsor, Nina Aguayo, and her son, Jonathon Aguayo, in Fall of 2018. Jonathon is diagnosed with Delayed Brain Development and Hypotonia with some characteristics of Cerebral Palsy. He has a 50lb high intensity stroller to go to and from school. Mrs. Aguayo needed a stroller that is easier to transport while still meeting all of Jonathon’s needs. The re-designed stroller will make leisurely outings for Mrs. Aguayo and Jonathon …


Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman Mar 2019

Torsional Stiffness Of A Race Car, Reiley A. Schraeger, Cameron Kao, Raymond Deng, Omar Roman

Mechanical Engineering

Torsional stiffness plays a major role in any road vehicle. To understand torsional stiffness of a vehicle and make future iterations and improvements, a proper torsional stiffness jig is required to prove accurate and useful data. This report encompasses the new and improved testing jig and potential improvement ideas for more accurate results. With real data result relating to FEA calculations, designers can be confident in the FEA changes to torsional stiffness is accurate and will yield the probably results they desired. This report shows the methodology, manufacturing process and testing procedure to use on any Baja or SAE vehicle …


Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Daimscale — 1:14th Tractor-Trailer For Testing Driver Assistance Technology, Christopher Marrale, Jase Sasaki, Devin Bodmer Dec 2018

Daimscale — 1:14th Tractor-Trailer For Testing Driver Assistance Technology, Christopher Marrale, Jase Sasaki, Devin Bodmer

Mechanical Engineering

Active driver assistance systems are becoming increasingly wide-spread throughout the automotive industry due to their potential for safer roads and decreased costs of transportation, but testing these systems on real trucks can be time consuming, dangerous, and costly. Testing these systems on a small-scale tractor-trailer combination will lead to faster and more efficient development of driver assistance systems and can be used by both engineers and students, leading to a larger field of experienced developers to improve these systems.

Our goal will be to design, manufacture, and build a scale 6x2 model of the tractor portion of a Daimler semi-truck …


Team Joseph's Bike Trailer, Keely Thompson, Curtis Wathne, Ryan Meinhardt Jun 2018

Team Joseph's Bike Trailer, Keely Thompson, Curtis Wathne, Ryan Meinhardt

Mechanical Engineering

This final design report shows the results of this senior project’s design process of creating a custom bike trailer for Team Joseph. As done in the Scope of Work, Preliminary Design report, and Critical Design report, current products, relevant technologies, and American Society for Testing and Materials (ASTM) standards are fully researched and benchmarked to aid in the design selection process. Customer requirements are looked at and developed into engineering specifications. A detailed design was created for CDR to show to Team Joseph, and manufacturing and testing plans were laid out. This final design report adds the final design revisions …


Universal Studios Hollywood Vip Trolley - Roller Frame, Jeffrey Ploss, Chase Montague, Lincoln Treanor Jun 2018

Universal Studios Hollywood Vip Trolley - Roller Frame, Jeffrey Ploss, Chase Montague, Lincoln Treanor

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Cal Poly Rotor Recovered Rocket, Melissa Woodard Jun 2018

Cal Poly Rotor Recovered Rocket, Melissa Woodard

Mechanical Engineering

Statement of Confidentiality: The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Annuloplasty Mti: Improved Tooling For Annuloplasty Ring Manufacturing, Justin David Smith, Spencer Lee Combs, Luke Edward Maly Jun 2018

Annuloplasty Mti: Improved Tooling For Annuloplasty Ring Manufacturing, Justin David Smith, Spencer Lee Combs, Luke Edward Maly

Mechanical Engineering

The complete senior project report was submitted to the project advisor and sponsor. The results of this project are of a confidential nature and will not be published at this time.


Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards Dec 2017

Usa Boccia Ball Ramp For Athletes With Quadriplegia, Alissa A. Koukourikos, Matthew Lee, Nathan Bernards

Mechanical Engineering

In this report, the design process in creating an assistive device for Boccia Classification 3 (BC3) players is outlined. The initial research steps, including research into the rules of the game, capabilities of the players, and existing products is documented to show where ideas for the product stemmed from. This transitions into requirements that the sponsor requested, and preliminary designs and ideas for the product. Finally, this report explains the details of the final design, which has been analyzed for safety, ease of use, and ability to function under different conditions. The processes of manufacturing and testing will also be …


Dyno-Mite Redesign, Brandon Joseph Miller, Daniel Robert Hoffman, Richard Demedici Young Dec 2017

Dyno-Mite Redesign, Brandon Joseph Miller, Daniel Robert Hoffman, Richard Demedici Young

Mechanical Engineering

The Cal Poly Mechanical Control Systems Laboratory currently employs an outdated device, known as the Motomatic, to teach students about various motor characteristics and control methods. These include open-loop vs. closed-loop control, speed vs. position control, and DC motor response curves. The current device does not function properly and produces unreliable data due to overwhelming non-linear effects such as stiction and shaft misalignment. Our team was tasked with designing a replacement device that retains many of the same educational goals as the original lab procedure, while also adding new educational goals pertaining to the device system dynamics. The new apparatus, …


Animated Otto-Langen Atmospheric Engine, Keiran M. Hansen, Lance Hodgson, Rachel A. Jakob, Chris J. Splees Nov 2017

Animated Otto-Langen Atmospheric Engine, Keiran M. Hansen, Lance Hodgson, Rachel A. Jakob, Chris J. Splees

Mechanical Engineering

Based on an existing relationship between Dr. Owen and the Deutsches Museum, Otto-Mated was given the opportunity to collaborate with the two in a year-long senior design project. Otto-Mated was tasked with modeling and simulating the Otto-Langen Atmospheric Engine as a form of preservation and education. The model was created in SolidWorks and animated in Blender, effectively providing the museum with accurate and educational videos demonstrating the engine’s function. Within this document are the plans, decisions, and processes used to create our final product for Deutsches Museum.


Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez Jun 2017

Development Of 3d Compression Molded Composite Primary Structure, Sean D. Tischler, Jacob H. Goldstein, Alea A. Perez

Mechanical Engineering

The work accomplished by the Black Gold team improved upon the carbon fiber compression molding research and information available on the Cal Poly San Luis Obispo campus. The team used the rear suspension rocker arm off a Ventana Alpino mountain bike as a design goal for this project. This research and body of work includes the methods used to design a compression molded part for complex part loading and shape. This extends to the process of choosing an appropriate layup process, in addition to benefits and drawbacks of the use of chopped fibers in compression molding. The research includes the …


Leading Edge Boundary Layer Suction Device For The Cal Poly Rolling Road Wind Tunnel, Daniel C. Glover, Liam M. Madden, Robert J. Cabri Jun 2017

Leading Edge Boundary Layer Suction Device For The Cal Poly Rolling Road Wind Tunnel, Daniel C. Glover, Liam M. Madden, Robert J. Cabri

Mechanical Engineering

Over the course of three quarters from Fall of 2016 to Spring of 2017, our team designed and built a boundary layer suction device. The boundary layer suction device has three main functions: a scoop that redirects most of the boundary layer air out of the wind tunnel, fans that suck the remaining boundary layer air through a porous plate and ducting and out of the wind tunnel, and a transition bridge that transitions the remaining air smoothly onto the rolling road. The wind tunnel is owned by Cal Poly and the rolling road is a new addition to it. …


Pedal-Powered Drivetrain System, Geremy J. Patterson, Callaghan Fenerty, Bradley Welch Jun 2017

Pedal-Powered Drivetrain System, Geremy J. Patterson, Callaghan Fenerty, Bradley Welch

Mechanical Engineering

No abstract provided.


Additive Manufacturing For Post-Processing, Nathan D. Goodwin, Andrew Furmidge Jun 2017

Additive Manufacturing For Post-Processing, Nathan D. Goodwin, Andrew Furmidge

Mechanical Engineering

Additive Manufacturing for Post Processing (AMPP) is a team comprised of two Cal Poly Mechanical Engineering students: Nathan Goodwin and Andrew Furmidge. The project is focused in the area of metal additive manufacturing (AM) machines, which are still a developing technology. Improvements have been made to the quality of the machines in the past years, but many limitations still exist. One of these is the inability to print parts that are larger than the build volume. In an effort to solve this problem, whole parts are divided into pieces that are printed individually. This team’s senior project is to create …