Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Chemistry

PDF

2013

Institution
Keyword
Publication
Publication Type

Articles 151 - 173 of 173

Full-Text Articles in Engineering

Novel Copper (Ii) Mediated Transfection Nano-Systems And Biological Properties Of Pyridinium Surfactants, Sarit Pal Jan 2013

Novel Copper (Ii) Mediated Transfection Nano-Systems And Biological Properties Of Pyridinium Surfactants, Sarit Pal

Open Access Theses & Dissertations

Efficacy of gene therapy is relied upon the improvement of gene delivery vectors into mammalian cells. Although viral-based polynucleotide carriers are still considered as the most common method for gene delivery but the cost effectiveness, nonspecific lethal immune response has evoked the renaissance of non-viral synthetic delivery systems. An initial discovery by Felgnar et al showed Cationic Liposomes (CLs) (having an overall positive charge) when mixed with DNA to form CL-DNA complexes can enhance the transfer of polynucleotides into cells followed by its expression. Presently, a flurry of experimental works is taking place for the better understanding of structural characterization …


Method Development For A Chemical And Biological Analysis Of Glucocorticoids In Wastewater, Maria Carmen Lozano Jan 2013

Method Development For A Chemical And Biological Analysis Of Glucocorticoids In Wastewater, Maria Carmen Lozano

Open Access Theses & Dissertations

Glucocorticoids are a class of steroid hormones that can either be produced synthetically or naturally by the adrenal glands. The synthetic glucocorticoids are highly prescribed in the United States for their anti-inflammatory and immunosuppressive properties to treat a variety of ailments and diseases; however, these have been implicated in a number of adverse human conditions such as obesity, metabolic syndrome, immune-suppression, delayed puberty, adrenal insufficiency and Cushing Syndrome, among others. Ongoing research has shown that synthetic and natural hormones are transported to aquatic environments via mammalian excretion or wastewater effluent, and as a result, the release of glucocorticoids into the …


A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai Jan 2013

A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai

Articles

Visible-light-induced antibacterial activity of carbon-doped anatase-brookite titania nano-heterojunction photocatalysts are reported for the first time. These heterostructures were prepared using a novel low temperature (100 °C) non-hydrothermal low power microwave (300 W) assisted method. Formation of interband C 2p states was found to be responsible for the band gap narrowing of the carbon doped heterojunctions. The most active photocatalyst obtained after 60 minutes of microwave irradiation exhibits a 2-fold higher visible-light induced photocatalytic activity in contrast to the standard commercial photocatalyst Evonik-Degussa P-25. Staphylococcus aureus inactivation rate constant for carbon-doped nano-heterojunctions and the standard photocatalyst was 0.0023 and -0.0081 min …


Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan Jan 2013

Colloidal Nano-Apatite Particles With Active Luminescent And Magentic Properties For Biotechnology Applications, Rajendra Kasinath, Kumar Ganesan

Environmental Engineering

Colloidal Nano-apatite Particles with Active Luminescent and Magentic Properties for Biotechnology Applications. The synthesis of functional nano-materials is a burgeoning field that has produced remarkable and consistent breakthroughs over the last two decades. Individual particles have become smaller and shown potential for well defined functionality. However, there are still unresolved problems, a primary one being the loss of functionality and novelty due to uncontrolled aggregation driven by surface energy considerations. As such the first design criteria to harness the true potential of nanoparticles is to prevent unwanted agglomeration by: (1) improving, and, if possible, (2) controlling aggregation behavior. This requires …


Specific Salt Effects On The Formation And Thermal Transitions Among Β-Lactoglobulin And Pectin Electrostatic Complexes, Stacey Ann Hirt Jan 2013

Specific Salt Effects On The Formation And Thermal Transitions Among Β-Lactoglobulin And Pectin Electrostatic Complexes, Stacey Ann Hirt

Open Access Theses

Factors of ion specificity and ionic strength (I~0-100) were studied in the electrostatic complex formation and protein particle formation by thermal treatment for a β-lactoglobulin and pectin system. ζ-potential showed β-lactoglobulin and pectin began to interact near pH 5.50 and interactions were strengthened with decrease in pH. Visible light turbidimetry and light scattering at 90° revealed a trend in critical pH transitions for electrostatic complex formation based on both the ionic strength and the anion of the salt species, while effects of the monovalent cation was insignificant. Critical pH values for complex formation and separation (pHc and pHΦ) decreased with …


Preparation Of Cobalt/Nickel Molybdenum Sulfide Catalysts Supported By Aqueous Media Soluble Multi-Wall Carbon Nanotubes., Hassan Ahmad Bleibel Jan 2013

Preparation Of Cobalt/Nickel Molybdenum Sulfide Catalysts Supported By Aqueous Media Soluble Multi-Wall Carbon Nanotubes., Hassan Ahmad Bleibel

Open Access Theses & Dissertations

Multi-walled carbon nanotubes (MWCNTs) have been subjected to chemical treatment in order to introduce hydrophilic functional groups on their surfaces. These covalently bonded groups did enhance the solubility of MWCNTs in aqueous media as expected. Functionalized MWCNTs were characterized using FTIR, Raman spectroscopy, TGA, X-ray diffraction, dispersion test and TEM. Then, functionalized MWCNTs were incorporated in the hydrothermal synthesis method of transition metal sulfide catalysts (CoMo, NiMo, and Ethylenediamine-CoMo Sulfides). Catalysts were characterized using X-ray diffraction, TEM, SEM, N2 Gas adsorption-desorption, elemental analysis, and Hydrodesulfurization (HDS) reaction of dibenzothiophene (DBT). The objective was to study the functionalized MWCNTs' effect; being …


Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake Jan 2013

Transformations, Bioavailability And Toxicity Of Manufactured Zno Nanomaterials In Wastewter, Sewwandi Rathnayake

Theses and Dissertations--Plant and Soil Sciences

In order to properly evaluate the ecological and human health risks of ZnO Manufactured nanomaterials (MNMs) released to the environment, it is critical to understand the likely transformation products in the wastewater treatment process and in soils receiving biosolids. To address this critical knowledge gap, we examined the transformation reactions of 30 nm ZnO MNMs in single component and multi-component systems, with phosphate and natural organic matter (NOM). We also assessed the influence of nano ZnO transformation on the bioavailability, and toxicity of ZnO transformation products to Triticum aestivum. The data revealed that ZnO MNMs react with phosphate at …


The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi Jan 2013

The Critical Role Of Mechanism-Based Models For Understanding And Predicting Liposomal Drug Loading, Binding And Release Kinetics, Sweta Modi

Theses and Dissertations--Pharmacy

Liposomal delivery systems hold considerable promise for improvement of cancer therapy provided that critical formulation design criteria can be met. The main objective of the current project was to enable quality by design in the formulation of liposomal delivery systems by developing comprehensive, mechanism-based mathematical models of drug loading, binding and release kinetics that take into account not only the therapeutic requirement but the physicochemical properties of the drug, the bilayer membrane, and the intraliposomal microenvironment.

Membrane binding of the drug affects both drug loading and release from liposomes. The influence of bilayer composition and phase structure on the partitioning …


Brust-Schiffrin Synthesis Of Catalytic Bipodal Pdpt Nanoparticles With Some Mechanistic Insights, Sangbum Han, Vara P. Sheela, Wei Cao, Balasubramanian Ramjee Jan 2013

Brust-Schiffrin Synthesis Of Catalytic Bipodal Pdpt Nanoparticles With Some Mechanistic Insights, Sangbum Han, Vara P. Sheela, Wei Cao, Balasubramanian Ramjee

Applied Research Center Publications

Brust–Schiffrin reduction of Pd and Pt precursors in the presence of resorcinarene amine surfactant led to the formation of substantially Pt rich, PdPt bimetallic nanoparticles of a V-shape or variants on the V-shape. New insights into this reaction are provided on the basis of reversed Brust–Schiffrin syntheses, DLS, UV-vis, and NMR analysis. Based on our experiments we conclude that the resorcinarene amine surfactant is part of the inverse micelle formed from TOABr and it also selectively complexes with the Pd salts prior to their reduction. Remarkably, the composition of the bipodal nanoparticles could be varied substantially by varying the reaction …


The Effect Of Nanostructure On The Electrical Properties Of Metal Oxide Materials, Philip Zachary Rice Jan 2013

The Effect Of Nanostructure On The Electrical Properties Of Metal Oxide Materials, Philip Zachary Rice

Legacy Theses & Dissertations (2009 - 2024)

Resistive random access memory (ReRAM) is a potential replacement technology for Flash and other memory implementations. Advantages of ReRAM include increased scalability, low power operation, and compatibility with silicon semiconductor manufacturing. Most of the ReRAM devices described to date have utilized thin film based metal oxide dielectrics as a resistive switching matrix. The goal of this dissertation project has been to investigate the resistive switching behavior of nanoparticulate metal oxides and to develop methods to utilize these materials in ReRAM device fabrication. To this end, nanoparticles of TiO2 and HfO2 were synthesized under a variety of conditions resulting …


Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau Jan 2013

Novel Resist Systems For Euv Lithography : Ler, Chain-Scission, Nanoparticle And More, Brian Cardineau

Legacy Theses & Dissertations (2009 - 2024)

Extreme Ultraviolet (EUV) lithography is currently the best option for replacing 193-nm lithography in future IC fabrication. For EUV to be successful, however, there are a number of challenges that must be overcome. Current resist designs struggle to meet the demands of future lithography nodes. We propose the best way to overcome these obstacles is through the design of novel resist systems.


Evolution Of Multispectral Aerosol Optical Properties In A Biogenically-Influenced Urban Environment During The Cares Campaign, Madhu Gyawali, W. Patrick Arnott, Rahul A. Zaveri, C. Song, Mikhail Pekour, B. Flowers, Manvendra K. Dubey, Ari Setyan, Qi Zhang, Joseph Harworth, James Gregory Radney, Dean B. Atkinson, S. China, Claudio Mazzoleni, Kyle Gorkowski, R. Subramanian, B. Tom Jobson, Hans Moosmüller Jan 2013

Evolution Of Multispectral Aerosol Optical Properties In A Biogenically-Influenced Urban Environment During The Cares Campaign, Madhu Gyawali, W. Patrick Arnott, Rahul A. Zaveri, C. Song, Mikhail Pekour, B. Flowers, Manvendra K. Dubey, Ari Setyan, Qi Zhang, Joseph Harworth, James Gregory Radney, Dean B. Atkinson, S. China, Claudio Mazzoleni, Kyle Gorkowski, R. Subramanian, B. Tom Jobson, Hans Moosmüller

Chemistry Faculty Publications and Presentations

Ground-based aerosol measurements made in June 2010 within Sacramento urban area (site T0) and at a 40-km downwind location (site T1) in the forested Sierra Nevada foothills area are used to investigate the evolution of multispectral optical properties as the urban aerosols aged and interacted with biogenic emissions. Along with black carbon and non-refractory aerosol mass and composition observations, spectral absorption (abs), scattering (sca), and extinction (ext) coefficients for wavelengths ranging from 355 to 1064nm were measured at both sites using photoacoustic (PA) instruments with integrating nephelometers and using cavity ring-down (CRD) instruments. The …


Development Of Novel Nano-Composite Membranes As Introduction Systems For Mass Spectrometers: Contrasting Nano-Composite Membranes And Conventional Inlet Systems, Luis Miranda Jan 2013

Development Of Novel Nano-Composite Membranes As Introduction Systems For Mass Spectrometers: Contrasting Nano-Composite Membranes And Conventional Inlet Systems, Luis Miranda

USF Tampa Graduate Theses and Dissertations

This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite …


Model Pt- And Pd-Based Electrocatalysts For Low Temperature Fuel Cells Applications, Selasi Ofoe Blavo Jan 2013

Model Pt- And Pd-Based Electrocatalysts For Low Temperature Fuel Cells Applications, Selasi Ofoe Blavo

USF Tampa Graduate Theses and Dissertations

In the search for alternative energy technologies, low temperature fuel cells continue to feature as technologies with the most promise for mass commercialization. Among the low temperature fuel cells, alkaline and proton exchange membrane fuel cells are the most popular. Alkaline fuel cells have typically been used for water generation as well as auxiliary power for space shuttles. Their bulkiness however makes them undesirable for other applications, especially in automobiles, where there is a great demand for alternative technologies to internal combustion engines. Proton exchange membrane fuel cells on the other hand possess numerous qualities including their compact size, high …


Purification Of Sodium Sulfate By Crystallization, Perla Teresita Torres Jan 2013

Purification Of Sodium Sulfate By Crystallization, Perla Teresita Torres

Open Access Theses & Dissertations

Sodium sulfate can be recovered from a dilute solution by concentrating it by conventional water treatment techniques like reverse osmosis and electrodialysis; however, those processes also concentrate impurities like arsenic. The sodium sulfate would have commercial use if it can be recovered in an arsenic-free form. This study demonstrated that sodium sulfate could be separated from impurities using slow cooling crystallization in a novel apparatus developed and designed during the experimentation. This device is called a heat exchanger crystallizer and allows slow cooling crystallization in order to grow pure crystals of sodium sulfate decahydrate. Crystals grown in the heat exchanger …


Polymeric Radiation Shielding For Applications In Space: Polyimide Synthesis And Modeling Of Multi-Layered Polymeric Shields, Clinton Cleveland Schiavone Jan 2013

Polymeric Radiation Shielding For Applications In Space: Polyimide Synthesis And Modeling Of Multi-Layered Polymeric Shields, Clinton Cleveland Schiavone

Dissertations, Theses, and Masters Projects

No abstract provided.


Model For Acid-Base Chemistry In Nanoparticle Growth (Mabnag), Taina Yli-Juuti, Kelley Barsanti, L. Hildebrandt Ruiz, Antti-Jussi Kieloaho, U. Makkonen, Tuukka Petäjä, Taina Ruuskanen, Markku Kulmala, Ilona Riipinen Jan 2013

Model For Acid-Base Chemistry In Nanoparticle Growth (Mabnag), Taina Yli-Juuti, Kelley Barsanti, L. Hildebrandt Ruiz, Antti-Jussi Kieloaho, U. Makkonen, Tuukka Petäjä, Taina Ruuskanen, Markku Kulmala, Ilona Riipinen

Civil and Environmental Engineering Faculty Publications and Presentations

Climatic effects of newly-formed atmospheric secondary aerosol particles are to a large extent determined by their condensational growth rates. However, all the vapours condensing on atmospheric nanoparticles and growing them to climatically relevant sizes are not identified yet and the effects of particle phase processes on particle growth rates are poorly known. Besides sulfuric acid, organic compounds are known to contribute significantly to atmospheric nanoparticle growth. In this study a particle growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) was developed to study the effect of salt formation on nanoparticle growth, which has been proposed as a potential …


Online Learning In A Chemical Perceptron, Peter Banda, Christof Teuscher, Matthew R. Lakin Jan 2013

Online Learning In A Chemical Perceptron, Peter Banda, Christof Teuscher, Matthew R. Lakin

Computer Science Faculty Publications and Presentations

Autonomous learning implemented purely by means of a synthetic chemical system has not been previously realized. Learning promotes reusability and minimizes the system design to simple input-output specification. In this article we introduce a chemical perceptron, the first full-featured implementation of a perceptron in an artificial (simulated) chemistry. A perceptron is the simplest system capable of learning, inspired by the functioning of a biological neuron. Our artificial chemistry is deterministic and discrete-time, and follows Michaelis-Menten kinetics. We present two models, the weight-loop perceptron and the weight-race perceptron, which represent two possible strategies for a chemical implementation of linear integration and …


Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski Dec 2012

Determination Of Kinetic Parameters From The Thermogravimetric Data Set Of Biomass Samples, Karol Postawa, Wojciech M. Budzianowski

Wojciech Budzianowski

This article describes methods of the determination of kinetic parameters from the thermogravimetric data set of biomass samples. It presents the methodology of the research, description of the needed equipment, and the method of analysis of thermogravimetric data. It describes both methodology of obtaining quantitative data such as kinetic parameters as well as of obtaining qualitative data like the composition of biomass. The study is focused mainly on plant biomass because it is easy in harvesting and preparation. Methodology is shown on the sample containing corn stover which is subsequently pyrolysed. The investigated sample show the kinetic of first order …


Temperature-Dependent Absorption Cross-Section Measurements Of 1-Butene (1-C4h8) In Vuv And Ir, Et-Touhami Es-Sebbar, Yves Benilan, Aamir Farooq Dec 2012

Temperature-Dependent Absorption Cross-Section Measurements Of 1-Butene (1-C4h8) In Vuv And Ir, Et-Touhami Es-Sebbar, Yves Benilan, Aamir Farooq

Dr. Et-touhami Es-sebbar

Vacuum ultraviolet (VUV) and infrared (IR) absorption cross-section measurements of 1-butene (1-C4H8; CH2=CHCH2CH3; Butylene) are reported over the temperature range of 296–529 K. The VUV measurements are performed between 115 and 205 nm using synchrotron radiation as a tunable VUV light source. Fourier Transform Infrared (FTIR) spectroscopy is employed to measure absorption cross-section and band strengths in the IR region between 1.54 and 25 μm (∼6500–400 cm−1). The measured room-temperature VUV and IR absorption cross-sections are compared with available literature data and are found to be in good agreement. The oscillator strength for the electronic transition (A1A′→X1A′) around 150–205 nm …


Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee Dec 2012

Surface Coated Eu(Oh)3 Nanorods: A Facile Synthesis, Characterization, Mr Relaxivities And In Vitro Cytotoxicity, Krishna Katte, Ja Young Park, Wenlong Xu, Badrul Alam Bony, Woo Cheol Heo, Tirusew Tegafaw, Cho Rong Kim, Md Wasi Ahmad, Seonguk Jin, Jong Su Baeck, Yongmin Chang, Tae Jeong Kim, Ji Eun Bae, Kwon Seok Chae, Ji Yun Jeong, Gang Ho Lee

Dr. Mohammad Wasi Ahmad (Md Wasi Ahmad)

No abstract provided.


Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho Dec 2012

Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4·3H2O as a precursor at 30 °C and a stainless-steel mesh as a reducing agent. The penetration of Cl− ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ → Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of …


Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho Dec 2012

Positively Charged Gold Nanoparticles Synthesized By Electrochemically Active Biofilm – A Biogenic Approach, Mohammad Mansoob Khan Dr, S. Kalathil, J. Lee, Moo Hwan Cho

Dr. Mohammad Mansoob Khan

Positively charged gold nanoparticles [(+) AuNPs] of 5-20 nm were synthesized by using electrochemically active biofilm (EAB) formed on a stainless steel mesh, within 30 minutes, in aqueous solution containing HAuCl4 as a precursor and sodium acetate as an electron donor. Electrochemically active bacteria present on biofilm oxidize the sodium acetate by producing electrons. Simultaneously, stainless steel also provides electrons because of the Cl− ions penetration into the stainless steel. Combined effect of both the EAB and stainless steel mesh enhances the availability of electrons for the reduction of Au3+ in the solution, which makes this synthesis efficient and fast. …