Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 61 - 75 of 75

Full-Text Articles in Engineering

Electrode Side Reactions, Capacity Loss And Mechanical Degradation In Lithium-Ion Batteries, Jiagang Xu, Rutooj D. Deshpande, Jie Pan, Yang-Tse Cheng, Vincent S. Battaglia Jul 2015

Electrode Side Reactions, Capacity Loss And Mechanical Degradation In Lithium-Ion Batteries, Jiagang Xu, Rutooj D. Deshpande, Jie Pan, Yang-Tse Cheng, Vincent S. Battaglia

Chemical and Materials Engineering Faculty Publications

For advancing lithium-ion battery (LIB) technologies, a detailed understanding of battery degradation mechanisms is important. In this article, experimental observations are provided to elucidate the relation between side reactions, mechanical degradation, and capacity loss in LIBs. Graphite/Li(Ni1/3Mn1/3Co1/3)O2 cells of two very different initial anode/cathode capacity ratios (R, both R > 1) are assembled to investigate the electrochemical behavior. The initial charge capacity of the cathode is observed to be affected by the anode loading, indicating that the electrolyte reactions on the anode affect the electrolyte reactions on the cathode. Additionally, the rate of “marching” …


A Quantitative Perspective On Surface Marker Selection For The Isolation Of Functional Tumor Cells, Calvin F. Cahall, Jacob L. Lilly, Edward A. Hirschowitz, Brad J. Berron Jul 2015

A Quantitative Perspective On Surface Marker Selection For The Isolation Of Functional Tumor Cells, Calvin F. Cahall, Jacob L. Lilly, Edward A. Hirschowitz, Brad J. Berron

Chemical and Materials Engineering Faculty Publications

Much effort has gone into developing fluid biopsies of patient peripheral blood for the monitoring of metastatic cancers. One common approach is to isolate and analyze tumor cells in the peripheral blood. Widespread clinical implementation of this approach has been hindered by the current choice of targeting epithelial markers known to be highly variable in primary tumor sites. Here, we review current antigen-based tumor cell isolation strategies and offer biological context for commonly studied cancer surface markers. Expression levels of the most common markers are quantitated for three breast cancer and two non-small cell lung cancer (NSCLC) lineage models. These …


General Method To Predict Voltage-Dependent Ionic Conduction In A Solid Electrolyte Coating On Electrodes, Jie Pan, Yang-Tse Cheng, Yue Qi Apr 2015

General Method To Predict Voltage-Dependent Ionic Conduction In A Solid Electrolyte Coating On Electrodes, Jie Pan, Yang-Tse Cheng, Yue Qi

Chemical and Materials Engineering Faculty Publications

Understanding the ionic conduction in solid electrolytes in contact with electrodes is vitally important to many applications, such as lithium ion batteries. The problem is complex because both the internal properties of the materials (e.g., electronic structure) and the characteristics of the externally contacting phases (e.g., voltage of the electrode) affect defect formation and transport. In this paper, we developed a method based on density functional theory to study the physics of defects in a solid electrolyte in equilibrium with an external environment. This method was then applied to predict the ionic conduction in lithium fluoride (LiF), in contact with …


Composition And Work Function Relationship In Os–Ru–W Ternary Alloys, Phillip D. Swartzentruber, Michael J. Detisch, Thomas John Balk Mar 2015

Composition And Work Function Relationship In Os–Ru–W Ternary Alloys, Phillip D. Swartzentruber, Michael J. Detisch, Thomas John Balk

Chemical and Materials Engineering Faculty Publications

Os–Ru thin films with varying concentrations of W were sputter deposited in order to investigate their structure–property relationships. The films were analyzed with x-ray diffraction to investigate their crystal structures, and a Kelvin probe to investigate their work functions. An Os–Ru–W film with ∼30 at. % W yielded a work function maximum of approximately 5.38 eV. These results align well with other studies that found work function minima from thermionic emission data on M-type cathodes with varying amounts of W in the coatings. Furthermore, the results are consistent with other work explaining energy-level alignment and charge transfer of molecules on …


Cytotoxic Activity Of Triazole-Containing Alkyl Ss-D-Glucopyranosides On A Human T-Cell Leukemia Cell Line, Edward Davis Oldham, Larissa M. Nunes, Armando Varela-Ramirez, Stephen E. Rankin, Barbara L. Knutson, Renato J. Aguilera, Hans-Joachim Lehmler Feb 2015

Cytotoxic Activity Of Triazole-Containing Alkyl Ss-D-Glucopyranosides On A Human T-Cell Leukemia Cell Line, Edward Davis Oldham, Larissa M. Nunes, Armando Varela-Ramirez, Stephen E. Rankin, Barbara L. Knutson, Renato J. Aguilera, Hans-Joachim Lehmler

Chemical and Materials Engineering Faculty Publications

BACKGROUND: Simple glycoside surfactants represent a class of chemicals that are produced from renewable raw materials. They are considered to be environmentally safe and, therefore, are increasingly used as pharmaceuticals, detergents, and personal care products. Although they display low to moderate toxicity in cells in culture, the underlying mechanisms of surfactant-mediated cytotoxicity are poorly investigated.

RESULTS: We synthesized a series of triazole-linked (fluoro)alkyl β-glucopyranosides using the copper-catalyzed azide-alkyne reaction, one of many popular "click" reactions that enable efficient preparation of structurally diverse compounds, and investigate the toxicity of this novel class of surfactant in the Jurkat cell line. Similar to …


Interfacial Polymerization For Colorimetric Labeling Of Protein Expression In Cells, Jacob L. Lilly, Phillip R. Sheldon, Liv J. Hoversten, Gabriela Romero, Vivek Balasubramaniam, Brad J. Berron Dec 2014

Interfacial Polymerization For Colorimetric Labeling Of Protein Expression In Cells, Jacob L. Lilly, Phillip R. Sheldon, Liv J. Hoversten, Gabriela Romero, Vivek Balasubramaniam, Brad J. Berron

Chemical and Materials Engineering Faculty Publications

Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric …


Field-Limited Migration Of Li-Ions In Li-Ion Battery, Fuqian Yang Nov 2014

Field-Limited Migration Of Li-Ions In Li-Ion Battery, Fuqian Yang

Chemical and Materials Engineering Faculty Publications

The migration of Li-ions in lithium-ion battery cannot be simply described by Fick's second law; the interactions among ionic migration, field, and stress need to be taken into account when analyzing the migration of Li-ions. Using the theory of thermal activation process, the flux for ionic migration under concurrent action of electric field and mechanical stress is found to be a nonlinear function of the gradient of electric potential and the gradient of stress. Electric field can either accelerate or retard the growth of the lithiation layer, depending on polarity of the field.


The Stochastic Dynamics Of Tethered Microcantilevers In A Viscous Fluid, Brian A. Robbins, Milad Radiom, William A. Ducker, John Y. Walz, Mark R. Paul Oct 2014

The Stochastic Dynamics Of Tethered Microcantilevers In A Viscous Fluid, Brian A. Robbins, Milad Radiom, William A. Ducker, John Y. Walz, Mark R. Paul

Chemical and Materials Engineering Faculty Publications

We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether …


Oxidation-Resistant, Solution-Processed Plasmonic Ni Nanochain-SioX (X < 2) Selective Solar Thermal Absorbers, Xiaobai Yu, Xiaoxin Wang, Qinglin Zhang, Juchuan Li, Jifeng Liu Aug 2014

Oxidation-Resistant, Solution-Processed Plasmonic Ni Nanochain-SioX (X < 2) Selective Solar Thermal Absorbers, Xiaobai Yu, Xiaoxin Wang, Qinglin Zhang, Juchuan Li, Jifeng Liu

Chemical and Materials Engineering Faculty Publications

Metal oxidation at high temperatures has long been a challenge in cermet solar thermal absorbers, which impedes the development of atmospherically stable, high-temperature, high-performance concentrated solar power (CSP) systems. In this work, we demonstrate solution-processed Ni nanochain-SiOx (x < 2) and Ni nanochain-SiO2 selective solar thermal absorbers that exhibit a strong anti-oxidation behavior up to 600 °C in air. The thermal stability is far superior to previously reported Ni nanoparticle-Al2O3 selective solar thermal absorbers, which readily oxidize at 450 °C. The SiOx (x < 2) and SiO2 matrices are derived from hydrogen silsesquioxane and tetraethyl orthosilicate precursors, respectively, which comprise Si-O cage-like …


A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge Aug 2014

A Non-Destructive Method For Measuring The Mechanical Properties Of Ultrathin Films Prepared By Atomic Layer Deposition, Qinglin Zhang, Xingcheng Xiao, Yang-Tse Cheng, Mark W. Verbrugge

Chemical and Materials Engineering Faculty Publications

The mechanical properties of ultrathin films synthesized by atomic layer deposition (ALD) are critical for the liability of their coated devices. However, it has been a challenge to reliably measure critical properties of ALD films due to the influence from the substrate. In this work, we use the laser acoustic wave (LAW) technique, a non-destructive method, to measure the elastic properties of ultrathin Al2O3 films by ALD. The measured properties are consistent with previous work using other approaches. The LAW method can be easily applied to measure the mechanical properties of various ALD thin films for multiple …


Correlation Between Microstructure And Thermionic Electron Emission From Os-Ru Thin Films On Dispenser Cathodes, Phillip D. Swartzentruber, Thomas John Balk, Michael P. Effgen Jul 2014

Correlation Between Microstructure And Thermionic Electron Emission From Os-Ru Thin Films On Dispenser Cathodes, Phillip D. Swartzentruber, Thomas John Balk, Michael P. Effgen

Chemical and Materials Engineering Faculty Publications

Osmium-ruthenium films with different microstructures were deposited onto dispenser cathodes and subjected to 1000 h of close-spaced diode testing. Tailored microstructures were achieved by applying substrate biasing during deposition, and these were evaluated with scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray spectroscopy before and after close-spaced diode testing. Knee temperatures determined from the close-spaced diode test data were used to evaluate cathode performance. Cathodes with a large {10-11} Os-Ru film texture possessed comparatively low knee temperatures. Furthermore, a low knee temperature correlated with a low effective work function as calculated from the close-spaced diode data. It is proposed …


Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz Mar 2014

Porous Nanocomposites With Integrated Internal Domains: Application To Separation Membranes, Wenle Li, John Y. Walz

Chemical and Materials Engineering Faculty Publications

Asymmetric membranes with layered structure have made significant achievements due to their balanced properties and multi-functionalities that come from a combination of multiple layers. However, issues such as delamination and substructure resistance are generated by the intrinsic layered structure. Here, we present a strategy to integrate the traditional layered structure into an asymmetric but continuous porous network. Through infiltrations of microparticles and nanoparticles to targeted regions, active domains are created inside the porous scaffold versus having them applied externally. The fabricated internal active domains are highly adjustable in terms of its dimensions, pore size, and materials. We demonstrate that it …


A Tensile Deformation Model For In-Situ Dendrite/Metallic Glass Matrix Composites, J. W. Qiao, T. Zhang, Fuqian Yang, P. K. Liaw, S. Pauly, B. S. Xu Oct 2013

A Tensile Deformation Model For In-Situ Dendrite/Metallic Glass Matrix Composites, J. W. Qiao, T. Zhang, Fuqian Yang, P. K. Liaw, S. Pauly, B. S. Xu

Chemical and Materials Engineering Faculty Publications

In-situ dendrite/metallic glass matrix composites (MGMCs) with a composition of Ti₄₆Zr₂₀V₁₂Cu₅Be₁₇ exhibit ultimate tensile strength of 1510 MPa and fracture strain of about 7.6%. A tensile deformation model is established, based on the five-stage classification: (1) elastic-elastic, (2) elastic-plastic, (3) plastic-plastic (yield platform), (4) plastic-plastic (work hardening), and (5) plastic-plastic (softening) stages, analogous to the tensile behavior of common carbon steels. The constitutive relations strongly elucidate the tensile deformation mechanism. In parallel, the simulation results by a finite-element method (FEM) are in good agreement with the experimental findings and theoretical calculations. The present study gives a mathematical model to clarify …


On Electric Conduction Of Amorphous Silicon Carbonitride Derived From A Polymeric Precursor, Yaohan Chen, Fuqian Yang, Linan An Jun 2013

On Electric Conduction Of Amorphous Silicon Carbonitride Derived From A Polymeric Precursor, Yaohan Chen, Fuqian Yang, Linan An

Chemical and Materials Engineering Faculty Publications

A long-existing problem that the conductivity of amorphous silicon carbonitrides derived from polymeric precursor increases significantly with pyrolysis temperature is investigated. We show that the conductivity exhibited an Arrhenius dependence on pyrolysis temperature, with the activation energy of ∼3.41 eV. Structural analysis using Raman spectroscopy reveals that the free carbon within the material undergoes a sp3-to-sp2 transition as pyrolysis temperature increases, with the activation energy of ∼3.6 eV. We conclude that the pyrolysis-temperature induced increase in the conductivity is mainly due to the increase in the conductivity of the free carbon. A simple model is proposed to …


Preparation And Hydrogen Absorption/Desorption Of Nanoporous Palladium Thin Films, Wen-Chung Li, Thomas John Balk Dec 2009

Preparation And Hydrogen Absorption/Desorption Of Nanoporous Palladium Thin Films, Wen-Chung Li, Thomas John Balk

Chemical and Materials Engineering Faculty Publications

Nanoporous Pd (np-Pd) was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen …