Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 151 - 158 of 158

Full-Text Articles in Engineering

Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi Aug 2017

Mechanobiology Of Epithelial Clusters In Ecms Of Diverse Mechanical Properties, Samila Nasrollahi

McKelvey School of Engineering Theses & Dissertations

Cell clusters reside in complex extracellular matrices (ECMs) of varying mechanical properties. Epithelial cells sense and translate the mechanical cues presented by the surrounding ECM into biochemical signals through a process called ‘mechanotransduction’, which controls fundamental aspects of disease and development. During the course of metastasis, mechanical changes in the tumor microenvironment can lead to declustering of epithelial cells through a process called epithelial-to-mesenchymal transition (EMT). Throughout different steps of metastasis, escaped epithelial clusters encounter heterogeneous tissues of varying mechanical properties that ultimately influence their behavior in distant locations within the body. This dissertation investigates the mechanobiology of epithelial clusters …


Characterization Of The High Frequency Alternating Current Block In The Rat Sciatic Nerve Using Cuff Electrodes And Macro-Sieve Electrodes, Soumyajit Ray Aug 2017

Characterization Of The High Frequency Alternating Current Block In The Rat Sciatic Nerve Using Cuff Electrodes And Macro-Sieve Electrodes, Soumyajit Ray

McKelvey School of Engineering Theses & Dissertations

Tripolar cuff electrodes were designed, fabricated and non-chronically implanted in the sciatic nerve of two-month-old Lewis rats. A proximal constant current stimulus to the nerve was blocked by applying a high frequency sinusoidal signal to the distally placed tripolar cuff electrode. The frequency voltage characteristic of the blocking signal was obtained. Complete block was not achieved using variants of the tripolar cuff design and bipolar cuff electrodes. Single and dual macro-sieve electrode assemblies were designed, fabricated and chronically implanted in the sciatic nerve of Lewis rats. After a four-month period for regeneration four different electrode configurations were tested to enable …


The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan May 2017

The Impact Of The Mitochondrial Metabolism Of Induced Pluripotent Stem Cells Upon Differentiation, Stefanie T. Shahan

McKelvey School of Engineering Theses & Dissertations

Induced pluripotent stem cells (iPSCs) can be differentiated into any cell type found in the body. The derivation of a stem cell derived β cell (SC-β) capable of responding to glucose by secreting insulin was hugely significant for diabetes research and opened up the possibility of cell replacement therapy to combat this widespread disease (Pagliuca et al. 2014). The optimization of differentiation procedures such as this could improve yield, function, cost, and efficiency of a stem cell-derived product. Current approaches to improve differentiation are primarily focused on signal transduction pathways, while the metabolic state of the cells has received little …


Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang Dec 2016

Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang

McKelvey School of Engineering Theses & Dissertations

Antibody-antigen recognition enables antibody-conjugated nanostructures to serve as plasmonic biosensors with tunable specificity. However due to the instability of antibodies, these biosensors are susceptible to changes in the environment such as heat and aridity, leading to constraints on the transportation and handling of these sensors. Here we establish a method using a metal-organic framework crystal to preserve biosensor activity under severe environmental conditions, including exposure to high temperatures, an organic solvent and a proteolytic agent. After zeolitic imidazolate framework-8 (ZIF-8) crystals formed for 12 hours on a biosensor of gold nanorods conjugated with a model antibody, rabbit IgG, 80% of …


Lesion Identification And The Effect Of Lesion On Motor Mapping After Stroke, Ruixi Zhou May 2016

Lesion Identification And The Effect Of Lesion On Motor Mapping After Stroke, Ruixi Zhou

McKelvey School of Engineering Theses & Dissertations

Stroke is the most common cause of long-term severe disability and the motor system that is most commonly affected in stroke. One of the mechanisms that underlies recovery of motor deficits is reorganization or remapping of functional representations around the motor cortex. This mechanism has been shown in monkeys, but results in human subjects have been variable. In this thesis, I used a database that includes longitudinal behavioral and multimodal imaging data in both stroke patients and healthy controls for two research projects. Firstly, I improved an automatic lesion segmentation method to aid in the identification of the location and …


Spontaneous Firing Of Sensory Neurons Modulates The Gain In The Downstream Circuit Of A Simple Olfactory System, Matthew O'Neill Aug 2015

Spontaneous Firing Of Sensory Neurons Modulates The Gain In The Downstream Circuit Of A Simple Olfactory System, Matthew O'Neill

McKelvey School of Engineering Theses & Dissertations

In locusts and other insects, odorants are transduced into electrical signal by the olfactory receptor neurons and transmitted to central circuits for further processing. Previous studies have shown that exogenous variables (e.g., flow rates, humidity, temperature, odor mixtures, etc.) can influence the responses of the sensory neurons and therefore modulate the central circuits. However, how the sensory neuron activity is manipulated to achieve adaptive gain control in the following circuit is yet to be understood. It is possible that the magnitude of the stimulus-evoked response in the receptor neurons, their spontaneous activity, or both of these factors can change how …


Gold Nanostructures For Sensing And Functional Bioimaging, Maximilian Y. Fei May 2015

Gold Nanostructures For Sensing And Functional Bioimaging, Maximilian Y. Fei

McKelvey School of Engineering Theses & Dissertations

Gold nanostructures offer an extremely promising path forward in the fields of imaging and sensing because of their unique optical and chemical properties. Here, we demonstrate that plasmonic nanostructures can be employed as nanoscale transducers to monitor the growth and phase transitions in ultrathin polymer films. In particular, gold nanorods with high refractive index sensitivity (~150 nm / refractive index unit (RIU)) were employed to probe the growth and swelling of polyelectrolyte multilayers (PEM). By comparing the wavelength shift and extinction intensity of the localized surface plasmon resonance (LSPR) of the gold nanorods coated with PEM in air and water, …


Real-Time Temperature Imaging Using Ultrasonic Change In Backscattered Energy, Weiyuan Zhao Dec 2014

Real-Time Temperature Imaging Using Ultrasonic Change In Backscattered Energy, Weiyuan Zhao

McKelvey School of Engineering Theses & Dissertations

Thermal therapy from low-temperature cryosurgery to high-temperature ablation of tumors and unwanted electrical pathways has gained increased attention. Temperature imaging (TI) from magnetic resonance studies is the de facto standard for volumetric estimation of temperature. Ultrasound has the advantages of being cheap, portable, non-invasive and non-ionizing. Our group showed in predictions for single scatterers, simulations of scatterer populations and measurements in 1D, 2D and 3D, that CBE changed monotonically with temperature with 1oC accuracy. An obstacle to clinical application of CBE TI is estimation of temperature in real time, which is limited by time for motion compensation (MC). …