Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Physics

Theses/Dissertations

2018

Institution
Keyword
Publication

Articles 31 - 60 of 462

Full-Text Articles in Entire DC Network

Innate Immunity, The Hepatic Extracellular Matrix, And Liver Injury: Mathematical Modeling Of Metastatic Potential And Tumor Development In Alcoholic Liver Disease., Shanice V. Hudson Dec 2018

Innate Immunity, The Hepatic Extracellular Matrix, And Liver Injury: Mathematical Modeling Of Metastatic Potential And Tumor Development In Alcoholic Liver Disease., Shanice V. Hudson

Electronic Theses and Dissertations

The overarching goals of the current work are to fill key gaps in the current understanding of alcohol consumption and the risk of metastasis to the liver. Considering the evidence this research group has compiled confirming that the hepatic matrisome responds dynamically to injury, an altered extracellular matrix (ECM) profile appears to be a key feature of pre-fibrotic inflammatory injury in the liver. This group has demonstrated that the hepatic ECM responds dynamically to alcohol exposure, in particular, sensitizing the liver to LPS-induced inflammatory damage. Although the study of alcohol in its role as a contributing factor to oncogenesis and …


Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang Dec 2018

Computational Prediction, Characterization, And Methodology Development For Two-Dimensional Nanostructures: Phosphorene And Phosphide Binary Compounds., Congyan Zhang

Electronic Theses and Dissertations

In this thesis, a comprehensive computational simulation was carried out for predicting, characterizing, and applications of two-dimensional (2D) materials. The newly discovered GaP and InP layers were selected as an example to demonstrate how to explore new 2D materials using computational simulations. The performance of phosphorene as the anode material of Lithium-ion battery was discussed as the example of the application of 2D material. Furthermore, the semi-empirical Hamiltonian for phosphorous and lithium elements have been developed for our future work on the application of phosphorus and lithium-based systems. The novel 2D materials of GaP and InP binary compounds were found …


Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar Dec 2018

Predicted Deepwater Bathymetry From Satellite Altimetry: Non-Fourier Transform Alternatives, Maxsimo Salazar

Dissertations

Robert Parker (1972) demonstrated the effectiveness of Fourier Transforms (FT) to compute gravitational potential anomalies caused by uneven, non-uniform layers of material. This important calculation relates the gravitational potential anomaly to sea-floor topography. As outlined by Sandwell and Smith (1997), a six-step procedure, utilizing the FT, then demonstrated how satellite altimetry measurements of marine geoid height are inverted into seafloor topography. However, FTs are not local in space and produce Gibb’s phenomenon around discontinuities. Seafloor features exhibit spatial locality and features such as seamounts and ridges often have sharp inclines. Initial tests compared the windowed-FT to wavelets in reconstruction of …


Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese Dec 2018

Computational Modeling Of Radiation Interactions With Molecular Nitrogen, Tyler Reese

Dissertations

The ability to detect radiation through identifying secondary effects it has on its surrounding medium would extend the range at which detections could be made and would be a valuable asset to many industries. The development of such a detection instrument requires an accurate prediction of these secondary effects. This research aims to improve on existing modeling techniques and help provide a method for predicting results for an affected medium in the presence of radioactive materials. A review of radioactivity and the interactions mechanisms for emitted particles as well as a brief history of the Monte Carlo Method and its …


Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia Dec 2018

Quasi-Particle Band Structure And Excitonic Effects In One-Dimensional Atomic Chains, Eesha Sanjay Andharia

Graduate Theses and Dissertations

The high exciton binding energy in one dimensional (1D) nano-structures makes them prominent for optoelectronic device applications, making it relevant to theoretically investigate their electronic and optical properties. Many-body effects that are not captured by the conventional density functional theory (DFT) have a huge impact in such selenium and tellurium single helical atomic chains. This work goes one step beyond DFT to include the electron self-energy effects within the GW approximation to obtain a corrected quasi-particle electronic structure. Further, the Bethe-Salpeter equation was solved to obtain the absorption spectrum and to capture excitonic effects. Results were obtained using the Hyberstein-Louie …


Radiative Double Electron Capture (Rdec) By Fully-Stripped Fluorine Ions In Collisions With Nitrogen, Nuwan Sisira Kumara Dec 2018

Radiative Double Electron Capture (Rdec) By Fully-Stripped Fluorine Ions In Collisions With Nitrogen, Nuwan Sisira Kumara

Dissertations

Radiative double electron capture (RDEC) by highly-stripped ions in collisions with atomic targets is a fundamental process that can be used to study electron-electron correlation, the interaction between two electrons, in the vicinity of the Coulomb field of a bare ion. In this process two electrons from the target are captured to bound states of the projectile with the simultaneous emission of a single photon. RDEC is closely related to the well-known one-step atomic process of radiative electron capture (REC), in which a target electron is captured to the projectile and a photon is simultaneously emitted. REC and RDEC can …


Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten Dec 2018

Towards Scalable Characterization Of Noisy, Intermediate-Scale Quantum Information Processors, Travis Luke Scholten

Physics & Astronomy ETDs

In recent years, quantum information processors (QIPs) have grown from one or two qubits to tens of qubits. As a result, characterizing QIPs – measuring how well they work, and how they fail – has become much more challenging. The obstacles to characterizing today’s QIPs will grow even more difficult as QIPs grow from tens of qubits to hundreds, and enter what has been called the “noisy, intermediate-scale quantum” (NISQ) era. This thesis develops methods based on advanced statistics and machine learning algorithms to address the difficulties of “quantum character- ization, validation, and verification” (QCVV) of NISQ processors. In the …


Kinetics Of Higher Lying Potassium States After Excitation Of The D2 Transition In The Presence Of Helium, Austin J. Wallerstein Dec 2018

Kinetics Of Higher Lying Potassium States After Excitation Of The D2 Transition In The Presence Of Helium, Austin J. Wallerstein

Theses and Dissertations

A kinetic model for the performance of a potassium Diode Pumped Alkali Laser (DPAL), including the role of higher lying states is developed to assess the impact on device efficiency and performance. A rate package for a nine level kinetic model including recommended rate parameters is solved under steady-state conditions. Energy pooling and far wing absorption populates higher lying states, with single photon and Penning ionization leading to modest potassium (K) dimer ion concentrations. The fraction of the population removed from the basic three levels associated with the standard model is less than 10% for all reasonable laser conditions, including …


Measurement Of The Cross Section Of Top Quark Pairs In Association With A Photon In Lepton+Jets Events At √S =13 Tev, Titas Roy Dec 2018

Measurement Of The Cross Section Of Top Quark Pairs In Association With A Photon In Lepton+Jets Events At √S =13 Tev, Titas Roy

Theses and Dissertations

The Large Hadron Collider (LHC) at CERN is the world’s biggest and most powerful accelerator. Colliding protons at the highest centre of mass energy yet, data are being collected by the detectors at an unprecendented rate, making it possible to search for new particles as well as make precise measurements. With the increase in statistics and energy of the data collected, it is now possible to make precise measurements with events that have a relatively low probability of occuring. In this thesis, the production cross section of a top quark pair plus a radiated photon, tt¯+γ, is measured in proton-proton …


3d Scintillator Detector Quenching Characterization For Scanning Proton Beams, Fahed Alsanea Dec 2018

3d Scintillator Detector Quenching Characterization For Scanning Proton Beams, Fahed Alsanea

Dissertations & Theses (Open Access)

Proton pencil beam scanning is becoming the standard treatment delivery technique for proton therapy centers. Scanned proton pencil beams provide a highly conformal dose distribution. The complex dose distribution poses challenges for quality assurance measurements leading to sophisticated detector setups and time consuming measurements. Fast 3D measurements are therefore desirable to verify the complex dose distribution and to enable the utilization of the full potential of proton therapy. The overall objective of this project is to improve volumetric scintillators detectors to provide 3D measurements for applications for beam commissioning, quality assurance program, and patient-specific treatment delivery verification.

Detectors based on …


Studying Mechanical And Structural Properties Of Β-Lg And Β-Cn Fibrils Using Atomic Force Microscopy, Hugo A. Villar Dec 2018

Studying Mechanical And Structural Properties Of Β-Lg And Β-Cn Fibrils Using Atomic Force Microscopy, Hugo A. Villar

Theses and Dissertations

Amyloid fibrils from milk proteins have recently been the subject of extensive investigations in biophysics. The purpose of this thesis is to investigate the dynamics of fibrillation and the mechanical properties of β-LG and β-CN fibers using AFM-Quantitative Nanomechanical Mapping (QNM) and AFM-force spectroscopy. β-LG required one day of heating at 80 °C , pH 2 to fibrillate in solution; β-CN required three days. Using the AFM-QNM mode an average elastic modulus of 4.3 GPa was determined for the β-LG fibers and 3.1 GPa for β-casein fibers. A persistence length of 920 nm was determined using end to end distance …


Improving Detection Of Dim Targets: Optimization Of A Moment-Based Detection Algorithm, Shannon R. Young Dec 2018

Improving Detection Of Dim Targets: Optimization Of A Moment-Based Detection Algorithm, Shannon R. Young

Theses and Dissertations

Wide area motion imagery (WAMI) sensor technology is advancing rapidly. Increases in frame rates and detector array sizes have led to a dramatic increase in the volume of data that can be acquired. Without a corresponding increase in analytical manpower, much of these data remain underutilized. This creates a need for fast, automated, and robust methods for detecting dim, moving signals of interest. Current approaches fall into two categories: detect-before-track (DBT) and track-before-detect (TBD) methods. The DBT methods use thresholding to reduce the quantity of data to be processed, making real time implementation practical but at the cost of the …


Understanding Group Dynamics Within A Classroom Using Small Group Networks And Epistemological Framing, Katarzyna E. Pomian Nov 2018

Understanding Group Dynamics Within A Classroom Using Small Group Networks And Epistemological Framing, Katarzyna E. Pomian

College of Science and Health Theses and Dissertations

In this study, we examined interactions within student groups and between groups and instructors. A deeper exploration of group dynamics helps educators to more fully understand student groups and student learning within the classroom. Our data are from a two-week summer program for incoming college freshman that focuses on helping students develop metacognitive and self-assessment tools. With the intention of using Social Network Analysis (SNA), we took the novel approach of creating network graphs from video data as opposed to surveys. However, given the isolated nature of the groups, the quantitative measures of SNA were inappropriate for our small group …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota Nov 2018

Electromagnetic Wave-Matter Interactions In Complex Opto-Electronic Materials And Devices, Raj Kumar Vinnakota

Doctoral Dissertations

This dissertation explores the fundamentals of light-matter interaction towards applications in the field of Opto-electronic and plasmonic devices. In its core, this dissertation attempts and succeeds in the the modeling of light-matter interactions, which is of high importance for better understanding the rich physics underlying the dynamics of electromagnetic field interactions with charged particles. Here, we have developed a self-consistent multi-physics model of electromagnetism, semiconductor physics and thermal effects which can be readily applied to the field of plasmotronics and Selective Laser Melting (SLM). Plasmotronics; a sub-field of photonics has experienced a renaissance in recent years by providing a large …


Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein Nov 2018

Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein

USF Tampa Graduate Theses and Dissertations

Metal-organic frameworks stand at the frontiers of molecular electronic research because they combine desirable physical properties of organic and inorganic components. They are crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal lattices up to 10000 m2 g-1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their unprecedented structural diversity and flexibility beyond solid state materials can lead to unique properties such as tailorable electronic and ionic conductivity which can serve as interesting platforms for a …


Shear-Force Acoustic Near-Field Microscopy And Its Implementation In The Study Of Confined Mesoscopic Fluids, Theodore Alex Brockman Nov 2018

Shear-Force Acoustic Near-Field Microscopy And Its Implementation In The Study Of Confined Mesoscopic Fluids, Theodore Alex Brockman

Dissertations and Theses

The recently developed Shear-Force Acoustic Near-Field Microscope (SANM) is used to investigate the viscoelastic properties of a mesoscopic fluid layer confined between two trapping boundaries, one being a stationary substrate and the other the apex of a laterally oscillating tapered probe. Hardware improvements and evaluation of the SANM-probe robustness will be a major focus of this thesis. The investigation first discusses characterization and recent developments made to the microscope, including: modifications to the sensor head, conditioning of the Nano positioners electrical drive signal, and the assessment of the probe against eventual plastic deformation or compliance against interactions with samples (the …


Quantum Algorithms, Architecture, And Error Correction, Ciarán Ryan-Anderson Nov 2018

Quantum Algorithms, Architecture, And Error Correction, Ciarán Ryan-Anderson

Physics & Astronomy ETDs

Quantum algorithms have the potential to provide exponential speedups over some of the best known classical algorithms. These speedups may enable quantum devices to solve currently intractable problems such as those in the fields of optimization, material science, chemistry, and biology. Thus, the realization of large-scale, reliable quantum-computers will likely have a significant impact on the world. For this reason, the focus of this dissertation is on the development of quantum-computing applications and robust, scalable quantum-architectures. I begin by presenting an overview of the language of quantum computation. I then, in joint work with Ojas Parekh, analyze the performance of …


The Effects Of Pressure And Magnetic Field On Phase Transitions And Related Physical Properties In Solid State Caloric Materials, Ahmad Ikhwan Us Saleheen Nov 2018

The Effects Of Pressure And Magnetic Field On Phase Transitions And Related Physical Properties In Solid State Caloric Materials, Ahmad Ikhwan Us Saleheen

LSU Doctoral Dissertations

Solid-state caloric effects, such as the magnetocaloric (MCE) and barocaloric (BCE) effects, may be utilized in future cooling technologies that are more efficient and environment-friendly. Large caloric effects often occur near phase transitions, especially near coupled first-order magnetostructural transitions (MST), and are initiated by external parameters, such as magnetic field or hydrostatic pressure. In this dissertation, the effects of pressure, temperature, and magnetic field on the phase transitions in three material systems are studied in order to elucidate how the respective caloric effects are affected.

In the first study, the realization of a coupled MST in a MnNiSi-based system through …


Mountaintop Neutrino Detection: A Nu(Tau) Concept, Caroline E. Paciaroni Nov 2018

Mountaintop Neutrino Detection: A Nu(Tau) Concept, Caroline E. Paciaroni

Physics

High-energy neutrinos traveling from the distant universe produce detectable signals at radio frequencies after interacting with the earth or its atmosphere. This is the principle behind a new experiment, the BEamforming Elevated Array for COsmogenic Neutrinos, or BEACON. BEACON will be a high altitude array of antennas that is sensitive to up-going tau neutrinos ($\nu_{\tau}$). These elementary particles serve as sources of information about the extraordinarily high energy events in the universe that create them, and also the laws of particle physics that govern their behavior. This report details the construction of a transient detector used to characterize site locations …


Quantum Phase Transitions In Disordered Boson Systems, Zhiyuan Yao Oct 2018

Quantum Phase Transitions In Disordered Boson Systems, Zhiyuan Yao

Doctoral Dissertations

In this dissertation, we study the superfluid-insulator quantum phase transition in disordered boson systems. Recently, there has been considerable controversy over the validity of the scaling relations of the superfluid--Bose-glass quantum phase transition in three dimensions. Results from experimental and numerical studies on disordered quantum magnets contradict the scaling relations and the associated conventional scaling hypothesis for the singular part of the free energy. We determine various critical exponents of the superfluid--Bose-glass quantum phase transition in three-dimensional disordered Bose-Hubbard model through extensive Monte Carlo simulations. Our numerical study shows the previous studies on disordered quantum magnets were performed outside the …


Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou Oct 2018

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou

Doctoral Dissertations

Hydrogels are crosslinked polymeric networks imbibed with aqueous solutions. They undertake dramatic volume changes through swelling and deswelling processes, which can be stimulated by factors like temperature, pH or different chemicals. These unique properties render hydrogels particularly interesting for shape morphing related applications. In this thesis, we focus on the swelling induced deformation of thermally responsive hydrogels with lower critical solution temperatures (LCSTs), including poly(N-isopropylacrylamide) (PNIPAm) and poly(N,N-diethylacrylamide) (PDEAm). Particularly, benzophenone containing monomers are copolymerized with NIPAm or DEAm to create photocrosslinkable temperature-responsive polymers, which allows fabrication of hydrogels with controlled shapes and crosslinking …


Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte Oct 2018

Alpha Radiation Studies And Related Backgrounds In The Darkside-50 Detector, Alissa Monte

Doctoral Dissertations

DarkSide-50 is the current phase of the DarkSide direct dark matter search program, operating underground at the Laboratori Nazionali del Gran Sasso in Italy. The detector is a dual-phase argon Time Projection Chamber (TPC), designed for direct detection of Weakly Interacting Massive Particles (WIMPs), and housed within a veto system of liquid scintillator and water Cherenkov detectors. Since switching to a target of low radioactivity argon extracted from underground sources in April 2015, the background is no longer dominated by naturally occurring 39Ar. However, alpha backgrounds from radon and its daughters remain, both from the liquid argon bulk and internal …


Collider Tests Of Fundamental Symmetries And Neutrino Properties, Haolin Li Oct 2018

Collider Tests Of Fundamental Symmetries And Neutrino Properties, Haolin Li

Doctoral Dissertations

The CP parity of the Higgs boson and the details of the electroweak symmetry breaking are the two crucial ingredients to understand the matter-antimatter asymmetry in our universe. Electroweak baryogenesis is an intriguing solution to the puzzle of this unexplained observed asymmetry because of its testability at present and near future collider experiments. The possibilities of testing CP phase in the Two-Higgs-Doublets Models (2HDMs) and the generation of a strong first-order electroweak phase transition (SFOEWPT) in the real singlet model at the future high luminosity LHC are studied. In addition to the specific extensions to the Standard Model (SM), I …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Measured Capillary Forces On Spheres At Liquid Interfaces And The Mechanics Of Interfacial Particulate Assemblies, Wei He Oct 2018

Measured Capillary Forces On Spheres At Liquid Interfaces And The Mechanics Of Interfacial Particulate Assemblies, Wei He

Doctoral Dissertations

Particle-laden interfaces have promising potentials in many fields because the particulate nature can endow the surface with physical properties that are not readily obtained from molecular-scale surfactants. In this dissertation, we first focus on measuring capillary forces on particles at fluid interfaces in order to assess the key parameters that yield effective stabilizing particles. In experiment, the force and the displacement of a millimeter-scale particle passing through a liquid interface were recorded. We find that the peak force needed to detach a particle from an interface crowded with other particles is consistently smaller than the force at a clean interface. …


Preparation, Mechanics And Structure Of Sphere Packings Near The Random Loose Packing Limit, Greg Robert Farrell Oct 2018

Preparation, Mechanics And Structure Of Sphere Packings Near The Random Loose Packing Limit, Greg Robert Farrell

Doctoral Dissertations

Packings of monodisperse, hard spheres serve as an important model system in the understanding of granular materials which are ubiquitous in nature and industry from sedimented river beds, to construction aggregates, to pharmaceuticals. Unlike frictionless hard spheres which are only stable at densities near the random close packing volume fraction, packings of real spheres form stable packings over a range of volume fractions. We report experimental investigations of sedimented packings of noncohesive polymethyl-methacrylate spheres over a range of volume fractions near the lower limit of this range of volume fractions. We create packings by slow sedimentation in a viscous fluid …


Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh Oct 2018

Geometry, Growth And Pattern Formation In Thin Elastic Structures, Salem Al-Mosleh

Doctoral Dissertations

Thin shells are abundant in nature and industry, from atomic to planetary scales. The mechanical behavior of a thin shell depends crucially on its geometry and embedding in 3 dimensions (3D). In fact, the behavior of extremely thin shells becomes scale independent and only depends on geometry. That is why the crumpling of graphene will have similarities to the crumpling of paper. In this thesis, we start by discussing the static behavior of thin shells, highlighting the role of asymptotic curves (curves with zero normal curvature) in determining the possible deformations and in controlling the folding patterns. In particular, we …


Equilibrium Partitioning Of Binary Polymer Mixtures Into Biological Nanopores, Mehmet Alphan Aksoyoglu Oct 2018

Equilibrium Partitioning Of Binary Polymer Mixtures Into Biological Nanopores, Mehmet Alphan Aksoyoglu

Doctoral Dissertations

The cell interior, enclosed by membrane barriers, is a condensed solution of inorganic ions, polymers, carbohydrates, polynucleotides, and a large number of other organic molecules. Within cells, transport of metabolites and biopolymers, such as polynucleotides and proteins, occurs partly through specific transmembrane pores (mesoscopic ion channels) spanning cellular compartments. Examples of such functions are translocation of matrix RNA molecules from cell nucleus through nuclear pore complexes, ejection of viral genome from bacterial virus capsids into host bacterial cells, and translocation of protein factors across toxin channels in biological membranes. All these processes, that occur in the cellular milieu, are mediated …


Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole Oct 2018

Application And Evaluation Of Lighthouse Technology For Precision Motion Capture, Soumitra Sitole

Masters Theses

This thesis presents the development towards a system that can capture and quantify motion for applications in biomechanical and medical fields demanding precision motion tracking using the lighthouse technology. Commercially known as SteamVR tracking, the lighthouse technology is a motion tracking system developed for virtual reality applications that makes use of patterned infrared light sources to highlight trackers (objects embedded with photodiodes) to obtain their pose or spatial position and orientation. Current motion capture systems such as the camera-based motion capture are expensive and not readily available outside of research labs. This thesis provides a case for low-cost motion capture …