Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Entire DC Network

Penetration Depth Variation In Atomic Layer Deposition On Multiwalled Carbon Nanotube Forests, David Alan Kane Dec 2018

Penetration Depth Variation In Atomic Layer Deposition On Multiwalled Carbon Nanotube Forests, David Alan Kane

Theses and Dissertations

Atomic Layer Deposition (ALD) of Al2O3 on tall multiwalled carbon nanotube forests shows concentration variation with the depth in the form of discrete steps. While ALD is capable of extremely conformal deposition in high aspect ratio structures, decreasing penetration depth has been observed over multiple thermal ALD cycles on 1.3 mm tall multiwalled carbon nanotube forests. SEM imaging with Energy Dispersive X-ray Spectroscopy elemental analysis shows steps of decreasing intensity corresponding to decreasing concentrations of Al2O3. A study of these steps suggests that they are produced by a combination of diffusion limited delivery of precursors with increasing precursor adsorption site …


Carbon Nanotube Yarn Based Dye Sensitized Solar Cells With Enhanced Electron/Hole Pair Recombination Prevention Characteristics, Glenn E. Grissom May 2018

Carbon Nanotube Yarn Based Dye Sensitized Solar Cells With Enhanced Electron/Hole Pair Recombination Prevention Characteristics, Glenn E. Grissom

Theses and Dissertations

Carbon nanotube yarn based solar cells (CNTYSCs) show promise in a variety of applications such as military and smart fabrics. We use a highly aligned and interwoven Carbon nanotube yarn (CNTY) for the working electrode (WE) and counter electrode (CE), to create a flexible super strong, conductive, and photo active surface for the support of a calcined TiO2 nano-solution and macro-solution deposition as a base for added functionalizations of a dye-sensitized solar cell (DSSC) that is able to maintain its flexibility and integrity. The CNT fiber based solar cells have power conversion ability that is independent of the direction of …


Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg Jan 2018

Heat, Charge And Spin Transport Of Thin Film Nanostructures, Devin John Wesenberg

Electronic Theses and Dissertations

Understanding of fundamental physics of transport properties in thin film nanostructures is crucial for application in spintronic, spin caloritronics and thermoelectric applications. Much of the difficulty in the understanding stems from the measurement itself. In this dissertation I present our thermal isolation platform that is primarily used for detection of thermally induced effects in a wide variety of materials. We can accurately and precisely produce in-plane thermal gradients in these membranes, allowing for thin film measurements on 2-D structures. First, we look at thermoelectric enhancements of doped semiconducting single-walled carbon nanotube thin films. We use the Wiedemann-Franz law to calculate …