Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 60 of 2471

Full-Text Articles in Entire DC Network

Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram Aug 2023

Spectral Broadening Effects On Pulsed-Source Digital Holography, Steven A. Owens, Mark F. Spencer, Glen P. Perram

Faculty Publications

Using a pulsed configuration, a digital-holographic system is setup in the off-axis image plane recording geometry, and spectral broadening via pseudo-random bit sequence is used to degrade the temporal coherence of the master-oscillator laser. The associated effects on the signal-to-noise ratio are then measured in terms of the ambiguity and coherence efficiencies. It is found that the ambiguity efficiency, which is a function of signal-reference pulse overlap, is not affected by the effects of spectral broadening. The coherence efficiency, on the other hand, is affected. As a result, the coherence efficiency, which is a function of effective fringe visibility, is …


Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras Jul 2023

Propagation Of Spatiotemporal Optical Vortex Beams In Linear, Second-Order Dispersive Media, Milo W. Hyde Iv, Miguel A. Porras

Faculty Publications

In this paper, we study the behaviors of spatiotemporal optical vortex (STOV) beams propagating in linear dispersive media. Starting with the Fresnel diffraction integral, we derive a closed-form expression for the STOV field at any propagation distance z in a general second-order dispersive medium. We compare our general result to special cases published in the literature and examine the characteristics of higher-order STOV beams propagating in dispersive materials by varying parameters of the medium and source-plane STOV field. We validate our analysis by comparing theoretical predictions to numerical computations of a higher-order STOV beam propagating through fused silica, where we …


Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak Jul 2023

Wave Optics Approach To Solar Cell Brdf Modeling With Experimental Results, Madilynn Compean, Todd V. Small, Milo W. Hyde Iv, Michael Marciniak

Faculty Publications

Light curve analysis is often used to discern information about satellites in geosynchronous orbits. Solar panels, comprising a large part of the satellite’s body, contribute significantly to these light curves. Historically, theoretical bidirectional reflectance distribution functions (BRDFs) have failed to capture key features in the scattered light from solar panels. In recently published work, a new solar cell BRDF was developed by combining specular microfacet and “two-slit” diffraction terms to capture specular and periodic/array scattering, respectively. This BRDF was experimentally motivated and predicted many features of the solar cell scattered irradiance. However, the experiments that informed the BRDF were limited …


Hyperspectral Point Cloud Projection For The Semantic Segmentation Of Multimodal Hyperspectral And Lidar Data With Point Convolution-Based Deep Fusion Neural Networks, Kevin T. Decker, Brett J. Borghetti Jul 2023

Hyperspectral Point Cloud Projection For The Semantic Segmentation Of Multimodal Hyperspectral And Lidar Data With Point Convolution-Based Deep Fusion Neural Networks, Kevin T. Decker, Brett J. Borghetti

Faculty Publications

The fusion of dissimilar data modalities in neural networks presents a significant challenge, particularly in the case of multimodal hyperspectral and lidar data. Hyperspectral data, typically represented as images with potentially hundreds of bands, provide a wealth of spectral information, while lidar data, commonly represented as point clouds with millions of unordered points in 3D space, offer structural information. The complementary nature of these data types presents a unique challenge due to their fundamentally different representations requiring distinct processing methods. In this work, we introduce an alternative hyperspectral data representation in the form of a hyperspectral point cloud (HSPC), which …


The Characteristics Of Successful Military It Projects: A Cross-Country Empirical Study, Helene Berg, Jonathan D. Ritschel Jul 2023

The Characteristics Of Successful Military It Projects: A Cross-Country Empirical Study, Helene Berg, Jonathan D. Ritschel

Faculty Publications

No abstract provided.


Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl Jul 2023

Accurate Covariance Estimation For Pose Data From Iterative Closest Point Algorithm, Rick H. Yuan, Clark N. Taylor, Scott L. Nykl

Faculty Publications

One of the fundamental problems of robotics and navigation is the estimation of the relative pose of an external object with respect to the observer. A common method for computing the relative pose is the iterative closest point (ICP) algorithm, where a reference point cloud of a known object is registered against a sensed point cloud to determine relative pose. To use this computed pose information in downstream processing algorithms, it is necessary to estimate the uncertainty of the ICP output, typically represented as a covariance matrix. In this paper, a novel method for estimating uncertainty from sensed data is …


Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton Jun 2023

Intrinsic Point Defects (Vacancies And Antisites) In Cdgep2 Crystals, Timothy D. Gustafson, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, Kent L. Averett, Jonathan E. Slagle, Larry E. Halliburton

Faculty Publications

Cadmium germanium diphosphide (CdGeP2) crystals, with versatile terahertz-generating properties, belong to the chalcopyrite family of nonlinear optical materials. Other widely investigated members of this family are ZnGeP2 and CdSiP2. The room-temperature absorption edge of CdGeP2 is near 1.72 eV (720 nm). Cadmium vacancies, phosphorous vacancies, and germanium-on-cadmium antisites are present in as-grown CdGeP2 crystals. These unintentional intrinsic point defects are best studied below room temperature with electron paramagnetic resonance (EPR) and optical absorption. Prior to exposure to light, the defects are in charge states that have no unpaired spins. Illuminating a CdGeP2 …


Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden Jun 2023

Optimal Estimation Inversion Of Ionospheric Electron Density From Gnss-Pod Limb Measurements: Part I-Algorithm And Morphology, Dong L. Wu, Nimalan Swarnalingam, Cornelius Csar Jude H. Salina, Daniel J. Emmons, Tyler C. Summers, Robert Gardiner-Garden

Faculty Publications

GNSS-LEO radio links from Precise Orbital Determination (POD) and Radio Occultation (RO) antennas have been used increasingly in characterizing the global 3D distribution and variability of ionospheric electron density (Ne). In this study, we developed an optimal estimation (OE) method to retrieve Ne profiles from the slant total electron content (hTEC) measurements acquired by the GNSS-POD links at negative elevation angles (ε < 0°). Although both OE and onion-peeling (OP) methods use the Abel weighting function in the Ne inversion, they are significantly different in terms of performance in the lower ionosphere. The new OE results can overcome the large Ne oscillations, sometimes negative values, seen in the OP retrievals in the E-region ionosphere. In the companion paper in this Special Issue, the HmF2 and NmF2 from the OE retrieval are validated against ground-based ionosondes and radar observations, showing generally good agreements in NmF2 from all sites. Nighttime hmF2 measurements tend to agree better than the daytime when the ionosonde heights tend to be slightly lower. The OE algorithm has been applied to all GNSS-POD data acquired from the COSMIC-1 (2006–2019), COSMIC-2 (2019–present), and Spire (2019–present) constellations, showing a consistent ionospheric Ne morphology. The unprecedented spatiotemporal sampling of the ionosphere from these constellations now allows a detailed analysis of the frequency–wavenumber spectra for the Ne variability at different heights. In the lower ionosphere (~150 km), we found significant spectral power in DE1, DW6, DW4, SW5, and SE4 wave components, in addition to well-known DW1, SW2, and DE3 waves. In the upper ionosphere (~450 km), additional wave components are still present, including DE4, DW4, DW6, SE4, and SW4. The co-existence of eastward- and westward-propagating wave4 components implies the presence of a stationary wave4 (SPW4), as suggested by other earlier studies. Further improvements to the OE method are proposed, including a tomographic inversion technique that leverages the asymmetric sampling about the tangent point associated with GNSS-LEO links.


Numerical Simulation Of The Korteweg–De Vries Equation With Machine Learning, Kristina O. F. Williams *, Benjamin F. Akers Jun 2023

Numerical Simulation Of The Korteweg–De Vries Equation With Machine Learning, Kristina O. F. Williams *, Benjamin F. Akers

Faculty Publications

A machine learning procedure is proposed to create numerical schemes for solutions of nonlinear wave equations on coarse grids. This method trains stencil weights of a discretization of the equation, with the truncation error of the scheme as the objective function for training. The method uses centered finite differences to initialize the optimization routine and a second-order implicit-explicit time solver as a framework. Symmetry conditions are enforced on the learned operator to ensure a stable method. The procedure is applied to the Korteweg–de Vries equation. It is observed to be more accurate than finite difference or spectral methods on coarse …


A Bit-Parallel Tabu Search Algorithm For Finding Es2 -Optimal And Minimax-Optimal Supersaturated Designs, Luis B. Morales, Dursun A. Bulotuglu Jun 2023

A Bit-Parallel Tabu Search Algorithm For Finding Es2 -Optimal And Minimax-Optimal Supersaturated Designs, Luis B. Morales, Dursun A. Bulotuglu

Faculty Publications

We prove the equivalence of two-symbol supersaturated designs (SSDs) with N (even) rows, m columns, smax=4t+i, where i ∈ {0,2}, t ∈ Z≥0 and resolvable incomplete block designs (RIBDs) whose any two blocks intersect in at most (N+4t+i)/4 points. Using this equivalence, we formulate the search for two-symbol E(s2)-optimal and minimax-optimal SSDs with smax ∈ {2,4,6} as a search for RIBDs whose blocks intersect accordingly. This allows developing a bit-parallel tabu search (TS) algorithm. The TS algorithm found E(s2)-optimal and minimax-optimal SSDs achieving the sharpest known E(s2) lower bound with …


A Comparison Of Quaternion Neural Network Backpropagation Algorithms, Jeremiah Bill, Bruce A. Cox, Lance Champaign Jun 2023

A Comparison Of Quaternion Neural Network Backpropagation Algorithms, Jeremiah Bill, Bruce A. Cox, Lance Champaign

Faculty Publications

This research paper focuses on quaternion neural networks (QNNs) - a type of neural network wherein the weights, biases, and input values are all represented as quaternion numbers. Previous studies have shown that QNNs outperform real-valued neural networks in basic tasks and have potential in high-dimensional problem spaces. However, research on QNNs has been fragmented, with contributions from different mathematical and engineering domains leading to unintentional overlap in QNN literature. This work aims to unify existing research by evaluating four distinct QNN backpropagation algorithms, including the novel GHR-calculus backpropagation algorithm, and providing concise, scalable implementations of each algorithm using a …


Fate And Transport Of Per- And Polyfluoroalkyl Substances (Pfas) At Aqueous Film Forming Foam (Afff) Discharge Sites: A Review, Jeffery T. Mcgarr, Eric G. Mbonimpa, Drew C. Mcavoy, Mohamad R. Soltanian May 2023

Fate And Transport Of Per- And Polyfluoroalkyl Substances (Pfas) At Aqueous Film Forming Foam (Afff) Discharge Sites: A Review, Jeffery T. Mcgarr, Eric G. Mbonimpa, Drew C. Mcavoy, Mohamad R. Soltanian

Faculty Publications

Per- and polyfluorinated alkyl substances (PFAS) are an environmentally persistent group of chemicals that can pose an imminent threat to human health through groundwater and surface water contamination. In this review, we evaluate the subsurface behavior of a variety of PFAS chemicals with a focus on aqueous film forming foam (AFFF) discharge sites. AFFF is the primary PFAS contamination risk at sites such as airports and military bases due to use as a fire extinguisher. Understanding the fate and transport of PFAS in the subsurface environment is a multifaceted issue. This review focuses on the role of adsorbent, adsorbate, and …


Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily May 2023

Method Of Evanescently Coupling Whispering Gallery Mode Optical Resonators Using Liquids, Hengky Chandrahalim, Kyle T. Bodily

AFIT Patents

The present invention relates to evanescently coupling whispering gallery mode optical resonators having a liquid coupling as well as methods of making and using same. The aforementioned evanescently coupling whispering gallery mode optical resonators having a liquid couplings provide increased tunability and sensing selectivity over current same. The aforementioned. Applicants’ method of making evanescent-wave coupled optical resonators can be achieved while having coupling gap dimensions that can be fabricated using standard photolithography. Thus economic, rapid, and mass production of coupled WGM resonators-based lasers, sensors, and signal processors for a broad range of applications can be realized.


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Filter-Based Air Sampler Capable Of Integration Into Small Unmanned Aerial Vehicles, Robert M. Eninger, Stepanie A. Ohms, Jeremy M. Slagley Apr 2023

Filter-Based Air Sampler Capable Of Integration Into Small Unmanned Aerial Vehicles, Robert M. Eninger, Stepanie A. Ohms, Jeremy M. Slagley

AFIT Patents

A filter-based air sampler, more specifically a filter-based air sampler capable of integration into small unmanned aerial systems is disclosed. The filter-based air sampler may include a filter assembly which has as its component parts: an open faced air intake component, a filter, and a filter support that has a central supporting grid. The filter assembly may joined to the housing of a fan, such as a centrifugal fan, with the supporting grid of the filter support being disposed over the air inlet of the fan.


Measuring Radiation Protection: Partners From Across The Nuclear Enterprise Evaluate The Radiation Protection Of Us Army Vehicles, Andrew W. Decker, Robert Prins Apr 2023

Measuring Radiation Protection: Partners From Across The Nuclear Enterprise Evaluate The Radiation Protection Of Us Army Vehicles, Andrew W. Decker, Robert Prins

Faculty Publications

Recent mounting nuclear threats and postures from adversary nation-states, such as Russia, China, North Korea, and Iran, represent a clear danger to the interests and security of the United States of America and its Allies. To meet these threats, the 2022 Nuclear Posture Review requires the Department of Defense (DoD) to design, develop, and manage a combat-credible U.S. military which, among other prioritizations, is survivable. A survivable force can generate combat power despite adversary attacks. As such, the US Army must prepare today to set the conditions for successful conventional warfare on the nuclear battlefields of tomorrow. Our Army cannot …


Toward A Simulation Model Complexity Measure, J. Scott Thompson, Douglas D. Hodson, Michael R. Grimaila, Nicholas Hanlon, Richard Dill Mar 2023

Toward A Simulation Model Complexity Measure, J. Scott Thompson, Douglas D. Hodson, Michael R. Grimaila, Nicholas Hanlon, Richard Dill

Faculty Publications

Is it possible to develop a meaningful measure for the complexity of a simulation model? Algorithmic information theory provides concepts that have been applied in other areas of research for the practical measurement of object complexity. This article offers an overview of the complexity from a variety of perspectives and provides a body of knowledge with respect to the complexity of simulation models. The key terms model detail, resolution, and scope are defined. An important concept from algorithmic information theory, Kolmogorov complexity, and an application of this concept, normalized compression distance, are used to indicate the possibility of measuring changes …


Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers Mar 2023

Numerical Simulation Of Steady-State Thermal Blooming With Natural Convection, Jeremiah S. Lane, Justin Cook, Martin Richardson, Benjamin F. Akers

Faculty Publications

This work investigates steady-state thermal blooming of a high-energy laser in the presence of laser-driven convection. While thermal blooming has historically been simulated with prescribed fluid velocities, the model introduced here solves for the fluid dynamics along the propagation path using a Boussinesq approximation to the incompressible Navier–Stokes equations. The resultant temperature fluctuations were coupled to refractive index fluctuations, and the beam propagation was modeled using the paraxial wave equation. Fixed-point methods were used to solve the fluid equations as well as to couple the beam propagation to the steady-state flow. The simulated results are discussed relative to recent experimental …


Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons Mar 2023

Evolution Of Coronal Magnetic Field Parameters During X5.4 Solar Flare, Seth H. Garland, Benjamin F. Akers, Vasyl B. Yurchyshyn, Robert D. Loper, Daniel J. Emmons

Faculty Publications

The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface |Bz| ≥ 300 G, areas of flare brightening seen …


Pulsed Power Neutron Production With Deuterated Polymer Accelerator Targets, Anthony O. Hagey Mar 2023

Pulsed Power Neutron Production With Deuterated Polymer Accelerator Targets, Anthony O. Hagey

Theses and Dissertations

This document presents an investigation of the effect of deuterated polyethylene accelerator targets on the neutron fluence from a local mass injection dense plasma focus driven by the United States Naval Research Laboratory’s Hawk pulsed-power generator. After successful production of thin targets, the acquisition of thicker targets, and testing inside Hawk, it was found that the presence of a deuterated polyethylene target increased the neutron fluence. Results suggested that fluence can significantly increase with the presence of a deuterated target vs a nondeuterated target. Additive manufacturing printing was used as a production method in order to determine if deuterated accelerator …


Hierarchical Federated Learning On Healthcare Data: An Application To Parkinson's Disease, Brandon J. Harvill Mar 2023

Hierarchical Federated Learning On Healthcare Data: An Application To Parkinson's Disease, Brandon J. Harvill

Theses and Dissertations

Federated learning (FL) is a budding machine learning (ML) technique that seeks to keep sensitive data private, while overcoming the difficulties of Big Data. Specifically, FL trains machine learning models over a distributed network of devices, while keeping the data local to each device. We apply FL to a Parkinson’s Disease (PD) telemonitoring dataset where physiological data is gathered from various modalities to determine the PD severity level in patients. We seek to optimally combine the information across multiple modalities to assess the accuracy of our FL approach, and compare to traditional ”centralized” statistical and deep learning models.


Simulation And Analysis Of Dynamic Threat Avoidance Routing In An Anti-Access Area Denial (A2ad) Environment, Dante C. Reid Mar 2023

Simulation And Analysis Of Dynamic Threat Avoidance Routing In An Anti-Access Area Denial (A2ad) Environment, Dante C. Reid

Theses and Dissertations

This research modeled and analyzed the effectiveness of different routing algorithms for penetration assets in an A2AD environment. AFSIM was used with different configurations of SAMs locations and numbers to compare the performance of AFSIM’s internal zone and shrink algorithm routers with a Dijkstra algorithm router. Route performance was analyzed through computational and operational metrics, including computational complexity, run-time, mission survivability, and simulation duration. This research also analyzed the impact of the penetration asset’s ingress altitude on those factors. Additionally, an excursion was conducted to analyze the Dijkstra algorithm router’s grid density holding altitude constant to understand its impact on …


Developing And Assessing A Generalized Serious Game That Supports Customized Joint All-Domain Operations Related Learning Objectives, Jonathan D. Moore Mar 2023

Developing And Assessing A Generalized Serious Game That Supports Customized Joint All-Domain Operations Related Learning Objectives, Jonathan D. Moore

Theses and Dissertations

As the threat of near-peer adversaries has increased, the DoD has increased its emphasis on Joint All-Domain Operations (JADO). This emphasis on JADO highlights the need for hands-on training that can engage military members at all levels. The serious game Battlespace Next (BSN) was designed to teach high-level JADO concepts by modeling real-world military assets in the context of a strategic card game. To keep pace with the evolving landscape of warfare as well as fit the needs of a variety of Department of Defense (DoD) communities, this research introduces the Battlespace Next Education Framework (BSNEF). The BSNEF allows JADO …


Temporal And Spatial Variability Of Specific Energy Consumption For Atmospheric Water Generators, Anthony T. Brenes Mar 2023

Temporal And Spatial Variability Of Specific Energy Consumption For Atmospheric Water Generators, Anthony T. Brenes

Theses and Dissertations

Atmospheric Water Generators (AWG) produce potable water from the moisture in the air, providing a potentially viable water source in austere locations or emergency response scenarios. In this study, the operating constraints of three existing commercially available AWG devices are investigated, compared to historical weather data from across the continental United States. Utilizing linear regression modeling and weather station data for the years of 1985-2019, the monthly and spatial trends of energy demand to produce water from these devices are evaluated. Energy and water production efficiencies for the devices are highly dependent on environmental conditions with relative humidity and temperature …


A Comparative Analysis Of Viral Aerosol Biological Sampling Efficiency Of A Small Unmanned Aircraft System (Suas)-Mounted Aerosol Sampler And A Reference Static Biosampler®, Jonathan D. Moroz Mar 2023

A Comparative Analysis Of Viral Aerosol Biological Sampling Efficiency Of A Small Unmanned Aircraft System (Suas)-Mounted Aerosol Sampler And A Reference Static Biosampler®, Jonathan D. Moroz

Theses and Dissertations

Bioaerosol sampling using small unmanned aerial systems (sUAS) is a rapidly developing field that may result in a paradigm shift in emergency response and industrial hygiene sampling conventions. These technologies offer decreased sample acquisition times, larger sampling area coverage, and reduced health and safety risks to traditional human sampling teams. This potential requires a comprehensive investigation of sUAS capabilities and limitations. This study is a continuation of the characterization of an AFIT-developed sUAS-mounted aerosol sampler, proven capable of collecting viable vegetative and spore-forming bacteria through previous AFIT research. Within this study, viral biological sampling efficiency (BSE) of the sUAS-mounted aerosol …


Regular Simplices Within Doubly Transitive Equiangular Tight Frames, Evan C. Lake Mar 2023

Regular Simplices Within Doubly Transitive Equiangular Tight Frames, Evan C. Lake

Theses and Dissertations

An equiangular tight frame (ETF) yields an optimal way to pack a given number of lines into a given space of lesser dimension. Every ETF has minimal coherence, and this makes it potentially useful for compressed sensing. But, its usefulness also depends on its spark: the size of the smallest linearly dependent subsequence of the ETF. When formed into a sensing matrix, a larger spark means a lower chance that information is lost when sensing a sparse vector. Spark is difficult to compute in general, but if an ETF contains a regular simplex, then every such simplex is a linearly …


Intel Total Memory Encryption: Functional Verification And Performance Analysis, Tallas Tian Sheng Goo Mar 2023

Intel Total Memory Encryption: Functional Verification And Performance Analysis, Tallas Tian Sheng Goo

Theses and Dissertations

While more attention is generally focused on software security, computer hardware security remains an important effort. Should an attacker gain direct physical access, computers with little to no hardware security can quickly be compromised via a manner of methods. One such attacker method is to steal information directly from the active memory of a locked, powered-on computer. To counter this attack, a hardware security method was developed called memory encryption. Memory encryption, as the name suggests, protects against adversary methods like cold boot attacks by encrypting all of memory. This research evaluates the efficacy and performance specifically of Intel TME. …


The Electromagnetic Bayonet: Development Of A Scientific Computing Method For Aperture Antenna Optimization, Michael P. Ingold Mar 2023

The Electromagnetic Bayonet: Development Of A Scientific Computing Method For Aperture Antenna Optimization, Michael P. Ingold

Theses and Dissertations

The quiet zone of a radar range is the region over which a transmitted EM field approximates a uniform plane wave to within some finite error tolerance. Any target to be measured must physically fit within this quiet zone to prevent excess measurement error. Compact radar ranges offer significant operational advantages for performing RCS measurements but their quiet zone sizes are constrained by space limitations. In this work, a scientific computing approach is used to investigate whether equivalent-current transmitters can be designed that generate larger quiet zones than a conventional version at short range. A time-domain near-field solver, JefimenkoModels, was …


Fast And Accurate 3d Object Reconstruction For Cargo Load Planning, Adam R. Nasi Mar 2023

Fast And Accurate 3d Object Reconstruction For Cargo Load Planning, Adam R. Nasi

Theses and Dissertations

Cargo load planning involves efficiently packing objects into aircraft subject to constraints such as space and weight distribution. Currently, this is performed manually by loadmasters. The United States Air Force is investigating ways to automate this process in order to improve airlift operational readiness while saving money. The first step in such a process would be generating 3D reconstructions of cargo objects to be used by a load planning algorithm. To that end, this thesis presents a novel method for fast, scaled, and accurate 3D reconstruction of cargo objects. This method can scan a 2.5m×3m×2m object in less than 10 …


Ensemble Aggregation In A Multi-Perspective Environment, Jonathan P. Nash Mar 2023

Ensemble Aggregation In A Multi-Perspective Environment, Jonathan P. Nash

Theses and Dissertations

Research towards improving the performance of artificial intelligence networks has found that larger and more complex networks tends to yield better results, and continuous hardware upgrades enables the development of larger, more complicated, and better performing neural networks. However, many devices that are widely available and more practical to everyday use, such as drones or smartphones, are unable to use the state-of-the-art neural networks because they simply do not have the processing capabilities to run them in addition to their normal function. It is possible to overcome this lower performance by using a variety of these smaller neural networks as …