Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 148

Full-Text Articles in Entire DC Network

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Extending The Quality Of Secure Service Model To Multi-Hop Networks, Paul M. Simon, Scott R. Graham Dec 2021

Extending The Quality Of Secure Service Model To Multi-Hop Networks, Paul M. Simon, Scott R. Graham

Faculty Publications

Rarely are communications networks point-to-point. In most cases, transceiver relay stations exist between transmitter and receiver end-points. These relay stations, while essential for controlling cost and adding flexibility to network architectures, reduce the overall security of the respective network. In an effort to quantify that reduction, we extend the Quality of Secure Service (QoSS) model to these complex networks, specifically multi-hop networks. In this approach, the quantification of security is based upon probabilities that adversarial listeners and disruptors gain access to or manipulate transmitted data on one or more of these multi-hop channels. Message fragmentation and duplication across available channels …


Characterization Of The Gut Microbiota Among Veterans With Unique Military-Related Exposures And High Prevalence Of Chronic Health Conditions: A United States-Veteran Microbiome Project (Us-Vmp) Study, Maggie A. Stanislawski, Christopher E. Stamper, Kelly A. Stearns-Yoder, Andrew J. Hoisington, Diana P. Brostow, Jeri E. Forster, Teodor T. Postolache, Christopher A. Lowry, Lisa A. Brenner Dec 2021

Characterization Of The Gut Microbiota Among Veterans With Unique Military-Related Exposures And High Prevalence Of Chronic Health Conditions: A United States-Veteran Microbiome Project (Us-Vmp) Study, Maggie A. Stanislawski, Christopher E. Stamper, Kelly A. Stearns-Yoder, Andrew J. Hoisington, Diana P. Brostow, Jeri E. Forster, Teodor T. Postolache, Christopher A. Lowry, Lisa A. Brenner

Faculty Publications

The gut microbiome is impacted by environmental exposures and has been implicated in many physical and mental health conditions, including anxiety disorders, affective disorders, and trauma- and stressor-related disorders such as posttraumatic stress disorder (PTSD). United States (US) military Veterans are a unique population in that their military-related exposures can have consequences for both physical and mental health, but the gut microbiome of this population has been understudied. In this publication, we describe exposures, health conditions, and medication use of Veterans in the US Veteran Microbiome Project (US-VMP) and examine the associations between these characteristics and the gut microbiota. This …


Comparison Of Seasonal Foes And Fbes Occurrence Rates Derived From Global Digisonde Measurements, Dawn K. Merriman, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Ii Dec 2021

Comparison Of Seasonal Foes And Fbes Occurrence Rates Derived From Global Digisonde Measurements, Dawn K. Merriman, Omar A. Nava, Eugene V. Dao, Daniel J. Emmons Ii

Faculty Publications

A global climatology of sporadic-E occurrence rates (ORs) based on ionosonde measurements is presented for the peak blanketing frequency, fbEs, and the ordinary mode peak frequency of the layer, foEs. ORs are calculated for a variety of sporadic-E frequency thresholds: no lower limit, 3, 5, and 7 MHz. Seasonal rates are calculated from 64 Digisonde sites during the period 2006–2020 using ionograms either manually or automatically scaled with ARTIST-5. Both foEs and fbEs ORs peak in the Northern Hemisphere during the boreal summer, with a decrease by roughly a factor of 2–3 in fbEs rates relative to foEs rates without …


Development Of A Magnetic Confinement Attachment For Enhanced Signal In Handheld Laser Induced Breakdown Spectroscopy Soil Analysis, Alfred C. Anderson Dec 2021

Development Of A Magnetic Confinement Attachment For Enhanced Signal In Handheld Laser Induced Breakdown Spectroscopy Soil Analysis, Alfred C. Anderson

Theses and Dissertations

Field techniques for characterizing low levels of heavy elements of less than 100 parts per million in soils tend to be unreliable because of the relatively weak signal of these elements and the large, variable background inherent to analyzing soils with minimal sample preparation. To enhance the detection and analysis capability of a handheld laser-induced breakdown spectroscopy (LIBS) instrument, this work investigates the effects of a unique magnetic confinement apparatus on signal intensities, focusing on five iron lines as well as those from actinides in 11 soil samples. The proposed magnetic confinement apparatus achieved over 0.8 T but did not …


Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller Dec 2021

Characterization Of Infrared Metasurface Optics With An Optical Scatterometer, Matthew R. Miller

Theses and Dissertations

An optical scatterometer is used to characterize the infrared scatter of a dielectric metasurface cylindrical lens and two variants of that design. The design uses dielectric nanopillars to create the parabolic phase delay required for lensing; the variants change the length of the nanopillars from the design length of 4 microns to 0.9 and 5.2 microns. Scatter measurements were made at the design wavelength of 4 microns, and at 3.39 and 5 microns. These measurements showed wide-angle scatter greater than that measured for a conventional refractive optic, and that these metasurfaces perform their optical function best at the design wavelength …


Two-Dimensional Steady Boussinesq Convection: Existence, Computation And Scaling, Jeremiah S. Lane, Benjamin F. Akers Benjamin.Akers@Afit.Edu Nov 2021

Two-Dimensional Steady Boussinesq Convection: Existence, Computation And Scaling, Jeremiah S. Lane, Benjamin F. Akers Benjamin.Akers@Afit.Edu

Faculty Publications

This research investigates laser-induced convection through a stream function-vorticity formulation. Specifically, this paper considers a solution to the steady Boussinesq Navier–Stokes equations in two dimensions with a slip boundary condition on a finite box. A fixed-point algorithm is introduced in stream function-vorticity variables, followed by a proof of the existence of steady solutions for small laser amplitudes. From this analysis, an asymptotic relationship is demonstrated between the nondimensional fluid parameters and least upper bounds for laser amplitudes that guarantee existence, which accords with numerical results implementing the algorithm in a finite difference scheme. The findings indicate that the upper bound …


Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely Nov 2021

Ionospheric F-Layer Dipole Flute Instability Effects On Electromagnetic Scattering In A Magnetohydrodynamic Plasma, Andrew J. Knisely

Theses and Dissertations

The ionosphere has significant impact on radio frequency (RF) applications such as satellites, over-the-horizon radar, and commercial communication systems. The dynamic processes effecting the behavior of the ionic content leads to a variety of instabilities that adversely affect the quality of RF signals. In the F-layer ionosphere, flute instability persists, appearing as two radial regions of high and low density perturbations elongated along the earth's geomagnetic field lines. The sizes of flute structures are comparable to the wavelengths in the high frequency spectrum. The objective is to characterize the high frequency scattering of an incident field by developing a 3D …


Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton Nov 2021

Optically Active Selenium Vacancies In Baga4Se7 Crystals, Brian C. Holloway, Timothy D. Gustafson, Christopher A. Lenyk, Nancy C. Giles, Kevin T. Zawilski, Peter G. Schunemann, Kent L. Averett, Larry E. Halliburton

Faculty Publications

Barium gallium selenide (BaGa4Se7) is a recently developed nonlinear optical material with a transmission window extending from 470 nm to 17 μm. A primary application of these crystals is the production of tunable mid-infrared laser beams via optical parametric oscillation. Unintentional point defects, such as selenium vacancies, cation vacancies (barium and/or gallium), and trace amounts of transition-metal ions, are present in BaGa4Se7 crystals and may adversely affect device performance. Electron paramagnetic resonance (EPR) and optical absorption are used to identify and characterize these defects. Five distinct EPR spectra, each representing an electron …


Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson Nov 2021

Traffic Collision Avoidance System: False Injection Viability, John Hannah, Robert F. Mills, Richard A. Dill, Douglas D. Hodson

Faculty Publications

Safety is a simple concept but an abstract task, specifically with aircraft. One critical safety system, the Traffic Collision Avoidance System II (TCAS), protects against mid-air collisions by predicting the course of other aircraft, determining the possibility of collision, and issuing a resolution advisory for avoidance. Previous research to identify vulnerabilities associated with TCAS’s communication processes discovered that a false injection attack presents the most comprehensive risk to veritable trust in TCAS, allowing for a mid-air collision. This research explores the viability of successfully executing a false injection attack against a target aircraft, triggering a resolution advisory. Monetary constraints precluded …


Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Nov 2021

Uncertainty Analysis For Ccd-Augmented Casi® Brdf Measurement System, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

This work presents a measurement uncertainty analysis for a system designed to simultaneously capture specular in-plane and out-of-plane bidirectional reflectance distribution function (BRDF) data with high spatial resolution by augmenting the Complete Angle Scatter Instrument (CASI®) with a charge-coupled device (CCD) camera. Various scatter flux, incident flux, scatter angle, and detector solid angle uncertainty contributions are considered and evaluated based on imperfectly known system parameters. In particular, incident flux temporal fluctuation, detector noise and non-linearity, and out-of-plane aperture misalignment considerations each require significant adjustment from original CASI® uncertainty analysis, and expressions for neutral density (ND) filter, scatter angle, and solid …


Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv Nov 2021

Spatiotemporal Non-Uniformly Correlated Beams, Milo W. Hyde Iv

Faculty Publications

We present a new partially coherent source with spatiotemporal coupling. The stochastic light, which we call a spatiotemporal (ST) non-uniformly correlated (NUC) beam, combines space and time in an inhomogeneous (shift- or space-variant) correlation function. This results in a source that self-focuses at a controllable location in space-time, making these beams potentially useful in applications such as optical trapping, optical tweezing, and particle manipulation. We begin by developing the mutual coherence function for an ST NUC beam. We then examine its free-space propagation characteristics by deriving an expression for the mean intensity at any plane z ≥ 0. To validate …


Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Oct 2021

Method Of Making Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A method of making passive microscopic Fabry-Pérot Interferometer (FPI) sensor includes forming a three-dimensional microscopic optical structure on a cleaved tip of an optical fiber that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak Oct 2021

Solar Cell Brdf Measurement And Modeling With Out-Of-Plane Data, Todd V. Small, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

In this work, a CCD-augmented complete angle scatter instrument (CASI) with a visible red laser source was used to measure the BRDF of a commercially available solar cell designed for small satellites, simultaneously capturing both in-plane and out-of-plane data with high angular resolution surrounding the specular direction. The measurements exhibited three distinct scatter features: a central specular peak, an offset specular peak, and a diffraction pattern. The two peaks were caused by different material surfaces with slightly different normal directions, and the diffraction pattern arose from periodically-spaced metal conducting bars running in one direction across the solar cell surface. The …


Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi Oct 2021

Reinvigorating A Technical Countering Weapons Of Mass Destruction Distance Learning Graduate Certificate Program, James C. Petrosky, Gaiven Varshney, Jeremy Slagley, Sara Shaghaghi

Faculty Publications

Current Countering Weapons of Mass Destruction (CWMD) demands can be divided broadly into policy and science. The science of chemical, biological, and radiological/nuclear weapons informs the limits of development, production, employment, operation, detection, risk characterization, human and material protection, and medical intervention. In short, the science of weapons of mass destruction (WMD) should precede and inform the development of policy. It is to this end that the Air Force Institute of Technology (AFIT) CWMD program was re-established, providing a technical educational option for practitioners to understand the science behind a very technically challenging subject.


Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers Sep 2021

Cognition-Enhanced Machine Learning For Better Predictions With Limited Data, Florian Sense, Ryan Wood, Michael G. Collins, Joshua Fiechter, Aihua W. Wood, Michael Krusmark, Tiffany Jastrzembski, Christopher W. Myers

Faculty Publications

The fields of machine learning (ML) and cognitive science have developed complementary approaches to computationally modeling human behavior. ML's primary concern is maximizing prediction accuracy; cognitive science's primary concern is explaining the underlying mechanisms. Cross-talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields’ methodologies to be integrated because accurately tracking learning and forgetting over time and predicting future performance based on learning histories are central to developing effective, personalized learning tools. Here, we show how a state-of-the-art ML model can …


Relationship Between Solar Energetic Particle He/H Abundance Ratios And Properties Of Flares And Cmes, Christopher R. Davidson Sep 2021

Relationship Between Solar Energetic Particle He/H Abundance Ratios And Properties Of Flares And Cmes, Christopher R. Davidson

Theses and Dissertations

Previous studies have investigated the He/H elemental abundance ratios of Solar Energetic Particle (SEP) Events of energies above 4 MeV. Also, studies have investigated the correlations between SEPs, Coronal Mass Ejections (CME), and Solar Flares. This work finds the correlations between the >4 MeV He/H abundance ratios and the solar parameters from the SEP, CME, and solar flare associated with the abundance increases. 43 SEP events located at solar west longitude are analyzed to find the correlation coefficients. Highly significant correlation was found between the He/H abundance ratios and the following parameters: solar flare flux, solar flare fluence, CME linear …


The Impact Of Laser Control On The Porosity And Microstructure Of Selective Laser Melted Nickel Superalloy 718, Travis E. Shelton, Gregory R. Cobb, Carl R. Hartsfield, Benjamin M. Doane, Cayla C. Eckley, Ryan A. Kemnitz Sep 2021

The Impact Of Laser Control On The Porosity And Microstructure Of Selective Laser Melted Nickel Superalloy 718, Travis E. Shelton, Gregory R. Cobb, Carl R. Hartsfield, Benjamin M. Doane, Cayla C. Eckley, Ryan A. Kemnitz

Faculty Publications

Additively manufacturing high performance metals by laser processing represents an exciting opportunity to exploit localized properties by varying input parameters throughout the process. This work explores the solidification and microstructural properties of selectively laser melted (SLM) Inconel 718 (IN718) using unique processing parameters. By employing traditional pulsed laser physics techniques, samples were manufactured with a continuous wave laser to study a potential ubiquitous approach. While the overall power density was controlled, the power, speed, and hatch spacing were varied. The porosity and grain sizes of the samples were characterized by optical and scanning electron microscopes. The influence of processing parameters …


Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak Sep 2021

Robust Method Of Determining Microfacet Brdf Parameters In The Presence Of Noise Via Recursive Optimization, Michael W. Bishop, Samuel D. Butler, Michael A. Marciniak

Faculty Publications

Accurate bidirectional reflectance distribution function (BRDF) models are essential for computer graphics and remote sensing performance. The popular microfacet class of BRDF models is geometric-optics-based and computationally inexpensive. Fitting microfacet models to scatterometry measurements is a common yet challenging requirement that can result in a model being fit as one of several unique local minima. Final model fit accuracy is therefore largely based on the quality of the initial parameter estimate. This makes for widely varying material parameter estimates and causes inconsistent performance comparisons across microfacet models, as will be shown with synthetic data. We proposed a recursive optimization method …


Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak Sep 2021

Data-Driven Algorithm To Classify The Degree Of Isotropy In The Bidirectional Reflectance Distribution Function, Anne W. Werkley, Samuel D. Butler, Todd V. Small, Michael A. Marciniak

Faculty Publications

The bidirectional reflectance distribution function (BRDF) is used to describe reflectances of materials by calculating the ratio of the reflected radiance to the incident irradiance. While it was found that the isotropic models maintained symmetry about ϕs  =  π, such symmetry was not maintained about the θs  =  θi axis, except for close to the specular peak. This led to the development of a data-driven metric for how isotropic a BRDF measurement is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit to models. This algorithm was tested using high …


Instabilities Of Overturned Traveling Waves, Tyler B. Pierce Sep 2021

Instabilities Of Overturned Traveling Waves, Tyler B. Pierce

Theses and Dissertations

The instabilities of overturned traveling waves are determined by the use of spectral methods. Two separate numerical methods, Spectral Stability Analysis and Dynamic Stability Analysis, are used to assess the instabilities of branches of waves solved from conformally-mapped Euler equations. The branches of waves with Bond number less than two were found to be spectrally stable to super-harmonic perturbations. The branches of waves with Bond number in [2,3) had some waves that were stable and some that were unstable. All overturned waves with Bond number greater than or equal to two were unstable.


Advancing Proper Dataset Partitioning And Classification Of Visual Search And The Vigilance Decrement Using Eeg Deep Learning Algorithms, Alexander J. Kamrud Sep 2021

Advancing Proper Dataset Partitioning And Classification Of Visual Search And The Vigilance Decrement Using Eeg Deep Learning Algorithms, Alexander J. Kamrud

Theses and Dissertations

Electroencephalography (EEG) classification of visual search and vigilance tasks has vast potential in its benefits. In future human-machine teaming systems, EEG could act as the tool for operator state assessment, enabling AI teammates to know when to assist the operator in these tasks, with the potential to lead to increased safety of operations, better training systems for our operators, and improved operational effectiveness. This research investigates deep learning methods which utilize EEG signals to classify the efficiency of an operator's search and to classify whether an operator is in a decrement during a vigilance type task, and investigates performing these …


Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver Sep 2021

Improvements To Emissive Plume And Shock Wave Diagnostics And Interpretation During Pulsed Laser Ablation Of Graphite, Timothy I. Calver

Theses and Dissertations

This dissertation covers nanosecond pulsed laser ablation of graphite for 4-5.7 J/cm2 fluences with 248 nm and 532 nm lasers in 1-180 Torr helium, argon, nitrogen, air, and mixed gas. Three experiments were performed to improve the interpretation of common diagnostics used to characterize pulsed laser ablation, find simple but universal scaling relationships for comparing dynamics across different materials and ablation conditions, and provide a systematic analysis of graphite emissive plume and shock wave dynamics. A scaling of the Sedov-Taylor energy ratio was developed and validated for a range of studies despite differences in wavelength, pulse duration, fluence, and …


Deep Learning For Weather Clustering And Forecasting, Nathaniel R. Beveridge Sep 2021

Deep Learning For Weather Clustering And Forecasting, Nathaniel R. Beveridge

Theses and Dissertations

Clustering weather data is a valuable endeavor in multiple respects. The results can be used in various ways within a larger weather prediction framework or could simply serve as an analytical tool for characterizing climatic differences of a particular region of interest. This research proposes a methodology for clustering geographic locations based on the similarity in shape of their temperature time series over a long time horizon of approximately 11 months. To this end an emerging and powerful class of clustering techniques that leverages deep learning, called deep representation clustering (DRC), are utilized. Moreover, a time series specific DRC algorithm …


Determining Physical Characteristics Through Information Leakage In 802.11ac Beamforming, Albert D. Taglieri Sep 2021

Determining Physical Characteristics Through Information Leakage In 802.11ac Beamforming, Albert D. Taglieri

Theses and Dissertations

The risk of information leakage in 802.11ac allows an eavesdropper to monitor wireless traffic and correlate physical locations between devices, as well as environment changes such as the motion of a person. Previous pattern-analysis mitigation methods, which used nonexistent devices to fool an eavesdropper, are not effective in an 802.11ac network, because devices on the network can be correlated to their physical location, which a nonexistent device does not have. Further, additional information about motion in the target environment can be observed and analyzed, providing a new potential for pattern analysis and sensing. 802.11ac makes it possible to plug in …


Analysis Of Space To Ground Ladar Performance With Non-Traditional Optics, Prayant P.S. Hanjra Sep 2021

Analysis Of Space To Ground Ladar Performance With Non-Traditional Optics, Prayant P.S. Hanjra

Theses and Dissertations

Two major obstacles to space-based LADAR systems are low power returns from targets and limitations on size and weight for transporting large optics into orbit. Signals incur significant losses during roundtrip propagation through the atmosphere and from diffuse scattering off of targets. Models, such as the Laser Environmental Effects Definition and Reference (LEEDR) simulator and High Energy Laser End to End Operational Simulation (HELEEOS) can predict these losses due to the atmosphere and optical components for a variety of atmospheric and environmental conditions across the globe. A transmissometer is used to validate these models. These losses are used to determine …


Enterprise Resource Allocation For Intruder Detection And Interception, Adam B. Haywood Sep 2021

Enterprise Resource Allocation For Intruder Detection And Interception, Adam B. Haywood

Theses and Dissertations

This research considers the problem of an intruder attempting to traverse a defender's territory in which the defender locates and employs disparate sets of resources to lower the probability of a successful intrusion. The research is conducted in the form of three related research components. The first component examines the problem in which the defender subdivides their territory into spatial stages and knows the plan of intrusion. Alternative resource-probability modeling techniques as well as variable bounding techniques are examined to improve the convergence of global solvers for this nonlinear, nonconvex optimization problem. The second component studies a similar problem but …


Characterizing Convolutional Neural Network Early-Learning And Accelerating Non-Adaptive, First-Order Methods With Localized Lagrangian Restricted Memory Level Bundling, Benjamin O. Morris Sep 2021

Characterizing Convolutional Neural Network Early-Learning And Accelerating Non-Adaptive, First-Order Methods With Localized Lagrangian Restricted Memory Level Bundling, Benjamin O. Morris

Theses and Dissertations

This dissertation studies the underlying optimization problem encountered during the early-learning stages of convolutional neural networks and introduces a training algorithm competitive with existing state-of-the-art methods. First, a Design of Experiments method is introduced to systematically measure empirical second-order Lipschitz upper bound and region size estimates for local regions of convolutional neural network loss surfaces experienced during the early-learning stages. This method demonstrates that architecture choices can significantly impact the local loss surfaces traversed during training. Next, a Design of Experiments method is used to study the effects convolutional neural network architecture hyperparameters have on different optimization routines' abilities to …


Development And Verification Of Extreme Space Weather Phenomena Models, Sophia G. Schwalbe Sep 2021

Development And Verification Of Extreme Space Weather Phenomena Models, Sophia G. Schwalbe

Theses and Dissertations

A range of 14 M-class flares from 1 June 2015 to 27 September 2016 were analyzed to find significant trends in electron frequency profile modeling using the GLobal airglOW (GLOW) model and radar parameters using a ray tracing algorithm developed by the Air Force Research Laboratory. GLOW was run for all the flares using three different solar spectrum schemes and an average of the three: the Hinteregger method, EUV flux model for aeronomic calculations (EUVAC), and a rebinned Flare Irradiance Spectrum Model (FISM) result. Comparing data for the E-layer where GLOW is most accurate, it was determined that GLOW using …


Wavelet Methods For Very-Short Term Forecasting Of Functional Time Series, Jared K. Nystrom Sep 2021

Wavelet Methods For Very-Short Term Forecasting Of Functional Time Series, Jared K. Nystrom

Theses and Dissertations

Space launch operations at Kennedy Space Center and Cape Canaveral Space Force Station (KSC/CCSFS) are complicated by unique requirements for near-real time determination of risk from lightning. Lightning forecast weather sensor networks produce data that are noisy, high volume, and high frequency time series for which traditional forecasting methods are often ill-suited. Current approaches result in significant residual uncertainties and consequentially may result in forecasting operational policies that are excessively conservative or inefficient. This work proposes a new methodology of wavelet-enabled semiparametric modeling to develop accurate and timely forecasts robust against chaotic functional data. Wavelets methods are first used to …