Open Access. Powered by Scholars. Published by Universities.®

Computational Linguistics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computational Linguistics

Creating Data From Unstructured Text With Context Rule Assisted Machine Learning (Craml), Stephen Meisenbacher, Peter Norlander Dec 2022

Creating Data From Unstructured Text With Context Rule Assisted Machine Learning (Craml), Stephen Meisenbacher, Peter Norlander

School of Business: Faculty Publications and Other Works

Popular approaches to building data from unstructured text come with limitations, such as scalability, interpretability, replicability, and real-world applicability. These can be overcome with Context Rule Assisted Machine Learning (CRAML), a method and no-code suite of software tools that builds structured, labeled datasets which are accurate and reproducible. CRAML enables domain experts to access uncommon constructs within a document corpus in a low-resource, transparent, and flexible manner. CRAML produces document-level datasets for quantitative research and makes qualitative classification schemes scalable over large volumes of text. We demonstrate that the method is useful for bibliographic analysis, transparent analysis of proprietary data, …


Integrating Cultural Knowledge Into Artificially Intelligent Systems: Human Experiments And Computational Implementations, Anurag Acharya May 2022

Integrating Cultural Knowledge Into Artificially Intelligent Systems: Human Experiments And Computational Implementations, Anurag Acharya

FIU Electronic Theses and Dissertations

With the advancement of Artificial Intelligence, it seems as if every aspect of our lives is impacted by AI in one way or the other. As AI is used for everything from driving vehicles to criminal justice, it becomes crucial that it overcome any biases that might hinder its fair application. We are constantly trying to make AI be more like humans. But most AI systems so far fail to address one of the main aspects of humanity: our culture and the differences between cultures. We cannot truly consider AI to have understood human reasoning without understanding culture. So it …


Toward Suicidal Ideation Detection With Lexical Network Features And Machine Learning, Ulya Bayram, William Lee, Daniel Santel, Ali Minai, Peggy Clark, Tracy Glauser, John Pestian Apr 2022

Toward Suicidal Ideation Detection With Lexical Network Features And Machine Learning, Ulya Bayram, William Lee, Daniel Santel, Ali Minai, Peggy Clark, Tracy Glauser, John Pestian

Northeast Journal of Complex Systems (NEJCS)

In this study, we introduce a new network feature for detecting suicidal ideation from clinical texts and conduct various additional experiments to enrich the state of knowledge. We evaluate statistical features with and without stopwords, use lexical networks for feature extraction and classification, and compare the results with standard machine learning methods using a logistic classifier, a neural network, and a deep learning method. We utilize three text collections. The first two contain transcriptions of interviews conducted by experts with suicidal (n=161 patients that experienced severe ideation) and control subjects (n=153). The third collection consists of interviews conducted by experts …