Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Social and Behavioral Sciences

Computational Simulation Of Eccentrically Loaded Circular Thin-Walled Concrete-Filled Double Steel Tubular Slender Columns, Mizan Ahmed, Qing Liang, Vipulkumar Patel, Muhammad N. S Hadi Jan 2020

Computational Simulation Of Eccentrically Loaded Circular Thin-Walled Concrete-Filled Double Steel Tubular Slender Columns, Mizan Ahmed, Qing Liang, Vipulkumar Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

The concrete confinement provided by the circular steel tubes improves the performance of circular concretefilled double steel tubular (CFDST) columns, which have increasingly been employed as high-performance structural members in tall buildings. This paper presents computational and design models for the simulation and design of high strength CFDST slender columns composed of circular thin-walled sections that are eccentrically loaded. The formulation of the computational model is described, which takes into account the influences of concrete confinement, geometric imperfection, second-order, gradual plasticity of steel, and geometric and material nonlinearities. The inverse quadratic method is implemented in computational algorithms which solve the …


Nonlinear Analysis Of Square Concrete-Filled Double Steel Tubular Slender Columns Incorporating Preload Effects, Mizan Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2020

Nonlinear Analysis Of Square Concrete-Filled Double Steel Tubular Slender Columns Incorporating Preload Effects, Mizan Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Thin-walled square and circular hollow steel tubes are designed to support the permanent and construction loads of several upper composite floors before filling the concrete into the tubes to form concrete-filled double steel tubular (CFDST) columns. The influences of preloads acting on the steel tubes on the structural responses of slender square CFDST columns have not been investigated either experimentally or numerically. This paper presents a fiber-based computational model for the determination of the interaction behavior of local and global buckling in axially and eccentrically loaded CFDST thin-walled square slender columns including preload effects. The computational modeling method accounts for …


Experimental And Numerical Investigations Of Eccentrically Loaded Rectangular Concrete-Filled Double Steel Tubular Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2020

Experimental And Numerical Investigations Of Eccentrically Loaded Rectangular Concrete-Filled Double Steel Tubular Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Rectangular concrete-filled double steel tubular (CFDST) columns have increasingly been utilized in high-rise buildings to support heavy loads. However, the responses of eccentrically loaded rectangular CFDST short columns have rarely been studied. This paper reports experimental and numerical investigations into the behavior of rectangular thin-walled short CFDST columns composed of a rectangular inner steel tube loaded eccentrically. Tests on rectangular and square CFDST short columns under eccentric loading and axial loading were carried out to examine their responses to various design parameters, including the cross-sectional dimensions, loading eccentricity, and width-to-thickness ratios of the external and internal tubes. The experimental program …


Experimental And Numerical Studies Of Square Concrete-Filled Double Steel Tubular Short Columns Under Eccentric Loading, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2019

Experimental And Numerical Studies Of Square Concrete-Filled Double Steel Tubular Short Columns Under Eccentric Loading, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Square concrete-filled double steel tubular (CFDST) beam-columns consisting of an internal circular steel tube have increasingly been utilized in composite building structures because of their high structural performance. This paper describes experimental and numerical studies on the structural responses of square thin-walled CFDST columns loaded eccentrically. Tests on twenty short square CFDST columns were undertaken that included sixteen columns under eccentric loading and four columns under concentric loading. The parameters examined in the experiments included the cross-sectional dimensions, the width-to-thickness ratios of outer and internal tubes and loading eccentricity. The measured ultimate strengths, load-shortening responses, load-lateral displacement curves, stress-strain curves …


Local-Global Interaction Buckling Of Square High Strength Concrete-Filled Double Steel Tubular Slender Beam-Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2019

Local-Global Interaction Buckling Of Square High Strength Concrete-Filled Double Steel Tubular Slender Beam-Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

High-strength square concrete-filled double steel tubular (CFDST) slender beam-columns with a circular internal steel tube subjected to eccentric loads may undergo interaction local-global buckling. No computational studies on the interaction local-global buckling of slender square CFDST beam-columns have been reported and their behavior has not been fully understood. This paper describes a mathematical model for the simulation of the interaction local-global buckling behavior of square high-strength CFDST slender beam-columns under axial compression in combination with uniaxial bending. The mathematical model is formulated by the fiber approach, accounting for confinement provided by the internal circular steel tube, and geometric and material …


Numerical Analysis Of Axially Loaded Rectangular Concrete-Filled Steel Tubular Short Columns At Elevated Temperatures, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi Jan 2019

Numerical Analysis Of Axially Loaded Rectangular Concrete-Filled Steel Tubular Short Columns At Elevated Temperatures, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Elevated temperatures significantly reduce the local buckling strengths of steel tubes and the ultimate strengths of rectangular concrete-filled steel tubular (CFST) columns exposed to fire. No fiber-based models have been developed that include local buckling effects on the fire-resistance of rectangular CFST columns. This paper presents a new fiber element model for the fire-resistance predictions of axially loaded rectangular CFST short columns at elevated temperatures considering local buckling. The thermal analysis problem of a CFST column is solved by the finite difference method to determine the temperature distribution within its cross-section including an air gap, concrete moisture content and the …


Numerical Analysis Of Axially Loaded Circular High Strength Concrete-Filled Double Steel Tubular Short Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2019

Numerical Analysis Of Axially Loaded Circular High Strength Concrete-Filled Double Steel Tubular Short Columns, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Circular high-strength concrete-filled double steel tubular (CFDST) columns are high performance members where the internal and external steel tubes offer significant confinement to the concrete infill. The confinement remarkably improves the concrete compressive strength and ductility. However, no fiber element models have been formulated for computing the responses of CFDST columns with circular steel tubes filled with high-strength concrete incorporating accurate confinement to the core and sandwiched concrete. In this paper, a new fiber-based numerical model is developed that computes the axial load-strain responses of circular high-strength CFDST short columns under axial loading. Based on existing experimental results, a new …


Fiber Element Simulation Of Interaction Behavior Of Local And Global Buckling In Axially Loaded Rectangular Concrete-Filled Steel Tubular Slender Columns Under Fire Exposure, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi Jan 2019

Fiber Element Simulation Of Interaction Behavior Of Local And Global Buckling In Axially Loaded Rectangular Concrete-Filled Steel Tubular Slender Columns Under Fire Exposure, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Slender rectangular thin-walled concrete-filled steel tubular (CFST) columns in composite building structures exposed to fire may experience the interaction of local and global buckling. Numerical investigations on the interaction buckling responses of such columns under fire exposure have been rarely reported. This paper describes a fiber-based computational model for the prediction of the fire-resistance and interaction responses of local and global buckling of concentrically-loaded slender CFST columns made of rectangular sections exposed to fire. The thermal analysis is undertaken to calculate the distribution of temperatures in the column cross-section considering the effects of the air gap between concrete and steel, …


Nonlinear Post-Fire Simulation Of Concentrically Loaded Rectangular Thin-Walled Concrete-Filled Steel Tubular Short Columns Accounting For Progressive Local Buckling, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi Jan 2019

Nonlinear Post-Fire Simulation Of Concentrically Loaded Rectangular Thin-Walled Concrete-Filled Steel Tubular Short Columns Accounting For Progressive Local Buckling, Ghanim Mohammed Kamil, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

The repair of fire-damaged thin-walled rectangular concrete-filled steel tubular (CFST) columns in engineering structures after fire exposure requires the assessment of their residual strength and stiffness. Existing numerical models have not accounted for the effects of local buckling on the post-fire behavior of CFST columns with rectangular thin-walled sections. This paper describes a nonlinear post-fire simulation technique underlying the theory of fiber analysis for determining the residual strengths and post-fire responses of concentrically loaded short thin-walled rectangular CFST columns accounting for progressive local buckling. The post-fire stress-strain laws for concrete in rectangular CFST columns are proposed based on available test …


Behavior Of Eccentrically Loaded Double Circular Steel Tubular Short Columns Filled With Concrete, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi Jan 2019

Behavior Of Eccentrically Loaded Double Circular Steel Tubular Short Columns Filled With Concrete, Mizen Ahmed, Qing Quan Liang, Vipulkumar I. Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part B

Circular concrete-filled double steel tubular (CFDST) columns in high-rise building structures possess high ductility and strength performance owing to the concrete confinement exerted by the external and internal circular steel tubes. However, the behavior of circular CFDST short columns that are loaded eccentrically has not been investigated either experimentally or numerically. Particularly, numerical studies on the moment-curvature responses, strength envelopes, confinement effects and moment distributions in circular CFDST beam-columns have not been reported. In this paper, experimental and computational investigations into the structural responses of circular CFDST short columns loaded eccentrically are presented. Nineteen short circular CFDST columns with various …


Nonlinear Analysis Of Circular High Strength Concrete-Filled Stainless Steel Tubular Slender Beam-Columns, Vipulkumar I. Patel, Qing Quan Liang, Muhammad N. S Hadi Jan 2017

Nonlinear Analysis Of Circular High Strength Concrete-Filled Stainless Steel Tubular Slender Beam-Columns, Vipulkumar I. Patel, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

Concrete-filled stainless steel tubular (CFSST) slender columns are increasingly used in composite structures owing to their distinguished features, such as aesthetic appearance, high corrosion resistance, high durability and ease of maintenance. Currently, however, there is a lack of an accurate and efficient numerical model that can be utilized to determine the performance of circular CFSST slender columns. This paper describes a nonlinear fiber-based model proposed for computing the deflection and axial load-moment strength interaction responses of eccentrically loaded circular high-strength CFSST slender columns. The fiber-based model incorporates the accurate three-stage stress-strain relations of stainless steels, accounting for different strain hardening …


Nonlinear Analysis Of Biaxially Loaded Rectangular Concrete-Filled Stainless Steel Tubular Slender Beam-Columns, Vipulkumar I. Patel, Qing Quan Liang, Muhammad N. S Hadi Jan 2017

Nonlinear Analysis Of Biaxially Loaded Rectangular Concrete-Filled Stainless Steel Tubular Slender Beam-Columns, Vipulkumar I. Patel, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

Rectangular concrete-filled stainless steel tubular (CFSST) beam-columns utilized as supporting members for building frames may experience axial compression and biaxial moments. A numerical simulation considering the local buckling effects for thin-walled rectangular CFSST slender beam-columns has not been performed. This paper reports a stability modeling on the structural characteristics of rectangular CFSST slender beam-columns accounting for different strain-hardening of stainless steel under tension and compression. The influences of local buckling are considered in the simulation utilizing the existing effective width formulations. The developed numerical model simulates the strength interaction and load-deflection behavior of CFSST slender beam-columns. Comparisons of computed results …


Cyclic Lateral Response Of Frp-Confined Circular Concrete-Filled Steel Tubular Columns, Tao Yu, Y M. Hu, Jin Guang Teng Jan 2016

Cyclic Lateral Response Of Frp-Confined Circular Concrete-Filled Steel Tubular Columns, Tao Yu, Y M. Hu, Jin Guang Teng

Faculty of Engineering and Information Sciences - Papers: Part A

Concrete-filled steel tubular (CFT) columns are widely used as columns in many structural systems and a common failure mode of such tubular columns is inelastic outward local buckling near a column end. The use of fibre-reinforced polymer (FRP) jackets/wraps for the suppression of such local buckling has recently been proposed and has been proven to possess excellent potential in both retrofit/strengthening and new construction. This paper presents the results of an experimental study into the behaviour of large-scale FRP-confined CFT (CCFT) columns under combined axial compression and lateral loading. The test parameters included the stiffness of the FRP jacket and …


Numerical Analysis Of High-Strength Concrete-Filled Steel Tubular Slender Beam-Columns Under Cyclic Loading, Vipulkumar Patel, Qing Quan Liang, Muhammad N. S Hadi Jan 2014

Numerical Analysis Of High-Strength Concrete-Filled Steel Tubular Slender Beam-Columns Under Cyclic Loading, Vipulkumar Patel, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

The effects of cyclic local buckling on the behavior of concrete-filled steel tubular (CFST) slender beam-columns under cyclic loading were approximately considered in existing analytical methods by modifying the stress– strain curve for the steel tube in compression. These methods, however, cannot simulate the progressive cyclic local buckling of the steel tubes. This paper presents a new efficient numerical model for predicting the cyclic performance of high strength rectangular CFST slender beam-columns accounting for the effects of progressive cyclic local buckling of steel tube walls under stress gradients. Uniaxial cyclic constitutive laws for the concrete core and steel tubes are …


Nonlinear Analysis Of Axially Loaded Cicular Concrete-Filled Stainless Steel Tubular Short Columns, Vipulkumar Patel, Qing Quan Liang, Muhammad N. S Hadi Jan 2014

Nonlinear Analysis Of Axially Loaded Cicular Concrete-Filled Stainless Steel Tubular Short Columns, Vipulkumar Patel, Qing Quan Liang, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

The experiments indicate that stainless steels in tension deform plastically more than stainless steels in compression. Therefore, the strain hardening of stainless steels in compression is much faster than that of stainless steels in tension. The full-range two-stage constitutive model for stainless steels assumes that stainless steels follow the same stress-strain behavior in compression and tension, which may underestimate the compressive strength of stainless steel tubes. This paper presents a fiber element model incorporating the recently developed full-range three-stage stress-strain relationships based on experimentally observed behavior for stainless steels for the nonlinear analysis of circular concrete-filled stainless steel tubular (CFSST) …


Behavior Of Hybrid Frp-Concrete-Steel Double-Skin Tubular Columns With A Square Outer Tube And A Circular Innert Tube Subjected To Axial Compression, Tao Yu, J G. Teng Jan 2013

Behavior Of Hybrid Frp-Concrete-Steel Double-Skin Tubular Columns With A Square Outer Tube And A Circular Innert Tube Subjected To Axial Compression, Tao Yu, J G. Teng

Faculty of Engineering and Information Sciences - Papers: Part A

Hybrid fiber-reinforced polymer (FRP) concrete steel, double skin tubular columns (DSTCs) are a new form of hybrid columns. The most common sectional form of hybrid DSTCs consists of a layer of concrete sandwiched between a circular inner steel tube and a circular outer FRP tube whose fiber directions are close to the hoop detection to provide effective confinement to the concrete. Much recent research has been conducted on circular hybrid DSTCs, which has demonstrated that the combination of the three constituent materials leads to several advantages not available with existing forms of columns. In practical applications, for aesthetic and other …


Nonlinear Inelastic Behavior Of Circular Concrete-Filled Steel Tubular Slender Beam-Columns With Preload Effects, Vipulkumar Ishvarbhai Patel, Qing Quan Liang, Muhammad N. Hadi Jan 2012

Nonlinear Inelastic Behavior Of Circular Concrete-Filled Steel Tubular Slender Beam-Columns With Preload Effects, Vipulkumar Ishvarbhai Patel, Qing Quan Liang, Muhammad N. Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

This paper presents a numerical model based on fiber element formulations for simulating the nonlinear inelastic behavior of eccentrically loaded circular concrete-filled steel tubular (CFST) slender beam-columns with preload effects. Deflections caused by preloads are included in the global analysis of CFST slender beam-columns as initial geometric imperfections. Computational algorithms based on the Müller's method are developed to obtain load-deflection responses of CFST slender beam-columns including preload effects. The accuracy of the numerical model is examined by comparisons of computer solutions with experimental results. The numerical model is utilized to investigate the effects of preloads on the axial load-deflection curves, …


Nonlinear Analysis Of Biaxially Loaded High Strength Rectangular Concrete-Filled Steel Tubular Slender Beam-Columns, Part I: Theory, Qing Quan Liang, Vipulkumar Ishvarbhai Patel, Muhammad N. S Hadi Jan 2012

Nonlinear Analysis Of Biaxially Loaded High Strength Rectangular Concrete-Filled Steel Tubular Slender Beam-Columns, Part I: Theory, Qing Quan Liang, Vipulkumar Ishvarbhai Patel, Muhammad N. S Hadi

Faculty of Engineering and Information Sciences - Papers: Part A

This paper presents a new numerical model for the nonlinear inelastic analysis of biaxially loaded high strength thin-walled rectangular concrete-filled steel tubular (CFST) slender beam-columns. The numerical model considers the effects of progressive local buckling, initial geometric imperfections, high strength materials and second order. The accurate fiber element method is used to model the inelastic behavior of composite cross-sections. Theoretical models are developed that simulate the load-deflection responses and strength envelopes of thin-walled rectangular CFST slender beamcolumns under biaxial loads. New computational algorithms based on the M􀂗􁈷 ller's method are developed to adjust the depth and orientation of the neutral …


Hybrid Frp-Concrete-Steel Double-Skin Tubular Columns: Cyclic Axial Compression Tests, Tao Yu, Yu-Bo Cao, Bing Zhang, J G. Teng Jan 2012

Hybrid Frp-Concrete-Steel Double-Skin Tubular Columns: Cyclic Axial Compression Tests, Tao Yu, Yu-Bo Cao, Bing Zhang, J G. Teng

Faculty of Engineering and Information Sciences - Papers: Part A

Hybrid FRP-concrete-steel double-skin tubular columns (hybrid DSTCs) are a new form of hybrid columns recently developed at The Hong Kong Polytechnic University. A hybrid DSTC consists of an inner steel tube, an outer FRP tube and a concrete infill between the two tubes. Hybrid DSTCs possess many important advantages over existing column forms, including their excellent corrosion resistance and excellent seismic resistance. While a large amount of research has been conducted on the monotonic behavior of this novel form of columns, only a limited amount of work has been conducted on their behavior under cyclic loading. This paper presents the …


Behaviour Of Hybrid Double-Skin Tubular Columns Subjected To Combined Axial Compression And Cyclic Lateral Loading, Bing Zhang, J G. Teng, Tao Yu Jan 2012

Behaviour Of Hybrid Double-Skin Tubular Columns Subjected To Combined Axial Compression And Cyclic Lateral Loading, Bing Zhang, J G. Teng, Tao Yu

Faculty of Engineering and Information Sciences - Papers: Part A

Hybrid FRP-concrete-steel double-skin tubular columns (hybrid DSTCs) are a new form of hybrid columns developed at The Hong Kong Polytechnic University. They consist of an outer tube made of fibre reinforced polymer (FRP) and an inner tube made of steel, with the space between filled with concrete. In these hybrid DSTCs, the three constituent materials are optimally combined to achieve several advantages not available with existing forms of columns, including their superior corrosion and seismic performance. This paper presents the test results of a series of large-scale hybrid DSTCs subjected to combined axial and cyclic lateral loads, with an emphasis …


Flexural Behaviour Of Hybrid Frp-Concrete-Steel Double Skin Tubular Members, T Yu, Y L. Wong, J G. Teng, S L. Dong, E S.S Lam Jan 2006

Flexural Behaviour Of Hybrid Frp-Concrete-Steel Double Skin Tubular Members, T Yu, Y L. Wong, J G. Teng, S L. Dong, E S.S Lam

Faculty of Engineering and Information Sciences - Papers: Part A

This paper presents the results of an experimental study on the flexural behavior of a new type of hybrid FRP-concrete-steel member as well as results from a corresponding theoretical model based on the plane section assumption and the fiber element approach. This new type of hybrid member is in the form of a double-skin tube, composed of a steel inner tube and an FRP outer tube with a concrete infill between the two tubes, and may be employed as columns or beams. The parameters examined in this study include the section configuration, the concrete strength, and the thicknesses of the …