Open Access. Powered by Scholars. Published by Universities.®

Social and Behavioral Sciences Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 41 of 41

Full-Text Articles in Social and Behavioral Sciences

Impact Of Hazardous Events On The Removal Of Nutrients And Trace Organic Contaminants By An Anoxic-Aerobic Membrane Bioreactor Receiving Real Wastewater, Hop V. Phan, Faisal I. Hai, James A. Mcdonald, Stuart J. Khan, Jason P. Van De Merwe, Frederic D. L Leusch, Ren Zhang, William E. Price, Andreas Broeckmann, Long D. Nghiem Sep 2015

Impact Of Hazardous Events On The Removal Of Nutrients And Trace Organic Contaminants By An Anoxic-Aerobic Membrane Bioreactor Receiving Real Wastewater, Hop V. Phan, Faisal I. Hai, James A. Mcdonald, Stuart J. Khan, Jason P. Van De Merwe, Frederic D. L Leusch, Ren Zhang, William E. Price, Andreas Broeckmann, Long D. Nghiem

Faisal I Hai

The impacts of four simulated hazardous events, namely, aeration failure, power loss, and chemical shocks (ammonia or bleach) on the performance of an anoxic-aerobic membrane bioreactor (MBR) receiving real wastewater were investigated. Hazardous events could alter pH and/or oxidation reduction potential of the mixed liquor and inhibit biomass growth, thus affecting the removal of bulk organics, nutrients and trace organic contaminants (TrOC). Chemical shocks generally exerted greater impact on MBR performance than aeration/power failure events, with ammonia shock exerting the greatest impact. Compared to total organic carbon, nutrient removal was more severely affected. Removal of the hydrophilic TrOCs that are …


Removal Of Pathogens By Membrane Bioreactors: A Review Of The Mechanisms, Influencing Factors And Reduction In Chemical Disinfectant Dosing, Faisal Hai, Thomas Riley, Samia Shawkat, Saleh Faraj Magram, Kazuo Yamamoto Sep 2015

Removal Of Pathogens By Membrane Bioreactors: A Review Of The Mechanisms, Influencing Factors And Reduction In Chemical Disinfectant Dosing, Faisal Hai, Thomas Riley, Samia Shawkat, Saleh Faraj Magram, Kazuo Yamamoto

Faisal I Hai

The continued depletion of fresh drinking water resources throughout the world has increased the need for a variety of water treatment and recycling strategies. Conventional wastewater treatment processes rely on extensive chemical post-disinfection to comply with the stringent microbiological safety for water reuse. When well designed and operated, membrane bioreactors (MBRs) can consistently achieve efficient removals of suspended solids, protozoa and coliform bacteria. Under optimal conditions, MBR systems can also significantly remove various viruses and phages. This paper provides an in-depth overview of the mechanisms and influencing factors of pathogen removal by MBR and highlights practical issues, such as reduced …


Rejection And Fate Of Trace Organic Compounds (Trocs) During Membrane Distillation, Kaushalya Wijekoon, Faisal Ibney Hai, Jinguo Kang, William E. Price, Tzahi Cath, Long D. Nghiem Sep 2015

Rejection And Fate Of Trace Organic Compounds (Trocs) During Membrane Distillation, Kaushalya Wijekoon, Faisal Ibney Hai, Jinguo Kang, William E. Price, Tzahi Cath, Long D. Nghiem

Faisal I Hai

In this study, we examined the feasibility of membrane distillation (MD) for removing trace organic compounds (TrOCs) during water and wastewater treatment. A set of 29 compounds was selected to represent major TrOC groups, including pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals, and pesticides that occur ubiquitously in municipal wastewater. Results reported here suggest that rejection and fate and transport of TrOC during MD are governed by their volatility and, to a lesser extent, hydrophobicity. All TrOCs with pKH > 9 (which can be classified as non-volatile) were well removed by MD. Among the 29 TrOCs investigated in this study, three …


High Retention Membrane Bioreactors: Challenges And Opportunities, Wenhai Luo, Faisal Ibney Hai, William Price, Wenshan Guo, Hao H. Ngo, Kazuo Yamamoto, Long Nghiem Sep 2015

High Retention Membrane Bioreactors: Challenges And Opportunities, Wenhai Luo, Faisal Ibney Hai, William Price, Wenshan Guo, Hao H. Ngo, Kazuo Yamamoto, Long Nghiem

Faisal I Hai

Extensive research has focussed on the development of novel high retention membrane bioreactor (HR-MBR) systems for wastewater reclamation in recent years. HR-MBR integrates high rejection membrane separation with conventional biological treatment in a single step. High rejection membrane separation processes currently used in HR-MBR applications include nanofiltration, forward osmosis, and membrane distillation. In these HR-MBR systems, organic contaminants can be effectively retained, prolonging their retention time in the bioreactor and thus enhancing their biodegradation. Therefore, HR-MBR can offer a reliable and elegant solution to produce high quality effluent. However, there are several technological challenges associated with the development of HR-MBR, …


A Novel Membrane Distillation-Thermophilic Bioreactor System: Biological Stability And Trace Organic Compound Removal, Kaushalya Wijekoon, Faisal Hai, Jinguo Kang, William Price, Wenshan Guo, Hao Ngo, Tzahi Cath, Long Nghiem Sep 2015

A Novel Membrane Distillation-Thermophilic Bioreactor System: Biological Stability And Trace Organic Compound Removal, Kaushalya Wijekoon, Faisal Hai, Jinguo Kang, William Price, Wenshan Guo, Hao Ngo, Tzahi Cath, Long Nghiem

Faisal I Hai

The removal of trace organic compounds (TrOCs) by a novel membrane distillation-thermophilic bioreactor (MDBR) system was examined. Salinity build-up and the thermophilic conditions to some extent adversely impacted the performance of the bioreactor, particularly the removal of total nitrogen and recalcitrant TrOCs. While most TrOCs were well removed by the thermophilic bioreactor, compounds containing electron withdrawing functional groups in their molecular structure were recalcitrant to biological treatment and their removal efficiency by the thermophilic bioreactor was low (0-53%). However, the overall performance of the novel MDBR system with respect to the removal of total organic carbon, total nitrogen, and TrOCs …


Biocatalytic Membrane Reactors For The Removal Of Recalcitrant And Emerging Pollutants From Wastewater, F Hai, L Nghiem, O Modin Sep 2015

Biocatalytic Membrane Reactors For The Removal Of Recalcitrant And Emerging Pollutants From Wastewater, F Hai, L Nghiem, O Modin

Faisal I Hai

The potential fields of application of biocatalytic membrane reactors have widened considerably in recent years. Although biocatalytic membrane reactors, in general, are yet to achieve broad industrial application, in the not too far future they are expected to play a major role, not only for the production, transformation and valorization of raw materials but also for environmental remediations. This chapter comprehensively reviews the laboratory scale studies which demonstrate the potential of biocatalytic membrane reactors in wastewater treatment applications. Studies reponed in the literature, however, serve as proof of concept only. Issues that need to be addressed in order to achieve …


Removal Of Bisphenol A And Diclofenac By A Novel Fungal Membrane Bioreactor Operated Under Non-Sterile Conditions, Shufan Yang, Faisal I. Hai, Long D. Nghiem, Luong N. Nguyen, Felicity Roddick, William E. Price Sep 2015

Removal Of Bisphenol A And Diclofenac By A Novel Fungal Membrane Bioreactor Operated Under Non-Sterile Conditions, Shufan Yang, Faisal I. Hai, Long D. Nghiem, Luong N. Nguyen, Felicity Roddick, William E. Price

Faisal I Hai

Previous studies have confirmed significant removal of various trace organic contaminants (TrOCs) by white-rot fungal cultures under sterile batch test conditions. However, little is known about TrOC removal in continuous flow fungal reactors in a non-sterile environment. This study reports the removal of two TrOCs, namely, bisphenol A and diclofenac, by a fungal membrane bioreactor (MBR).


Anaerobic Mbrs, Weijue Gao, Bao-Qiang Liao, Faisal Hai Sep 2015

Anaerobic Mbrs, Weijue Gao, Bao-Qiang Liao, Faisal Hai

Faisal I Hai

Anaerobic MBRs (AnMBRs) have been shown to be one of the most promising technologies for sustainable wastewater treatment. It offers several advantages over the aerobic MBRs, namely, requirement of no energy for aeration, low sludge production and energy resource. Compared to the conventional anaerobic processes, AnMBRs can maintain higher biomass concentrations, have higher treatment capacity, excellent effluent quality, and smaller footprint. Compared with the conventional anaerobic digestion, they are relatively robust to cope with variations in organic loading and inhibitory conditions due to complete retention of biomass by membranes. The AnMBR technology is now gaining acceptance by a wide range …


Degradation Of Azo Dye Acid Orange 7 In A Membrane Bioreactor By Pellets And Attached Growth Of Coriolus Versicolour, Faisal I. Hai, Kazuo Yamamoto, Fumiyuki Nakajima, Kensuke Fukushi, Long D. Nghiem, William E. Price, Bo Jin Sep 2015

Degradation Of Azo Dye Acid Orange 7 In A Membrane Bioreactor By Pellets And Attached Growth Of Coriolus Versicolour, Faisal I. Hai, Kazuo Yamamoto, Fumiyuki Nakajima, Kensuke Fukushi, Long D. Nghiem, William E. Price, Bo Jin

Faisal I Hai

The aim of this study was to systematically compare the degradation of azo dye acid orange 7 by spongy pellets and attached biofilm of Coriolus versicolour (NBRC 9791) in a membrane bioreactor (MBR) under non-sterile conditions. Mild stirring (35 rpm) resulted in spherical (φ = 0.5 cm), spongy pellets and concomitantly triggered high enzymatic activity of the fungus, allowing for excellent decolouration (>99%) of a synthetic wastewater containing the dye. However, bacterial contamination eventually damaged the fungus pellets, leading to decreased decolouration efficiency. Promotion of attached growth on a plastic support along with formation of spherical spongy pellets allowed …


A Review On The Occurrence Of Micropollutants In The Aquatic Environment And Their Fate And Removal During Wastewater Treatment, Yunlong Luo, Wenshan Guo, Huu Hao Ngo, Long Duc Nghiem, Faisal Ibney Hai, Jian Zhang, Shuang Liang, Xiaochang C. Wang Sep 2015

A Review On The Occurrence Of Micropollutants In The Aquatic Environment And Their Fate And Removal During Wastewater Treatment, Yunlong Luo, Wenshan Guo, Huu Hao Ngo, Long Duc Nghiem, Faisal Ibney Hai, Jian Zhang, Shuang Liang, Xiaochang C. Wang

Faisal I Hai

Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors …


Trace Organic Contaminants In Biosolids: Impact Of Conventional Wastewater And Sludge Processing Technologies And Emerging Alternatives, Galilee U. Semblante, Faisal I. Hai, Xia Huang, Andrew S. Ball, William E. Price, Long D. Nghiem Sep 2015

Trace Organic Contaminants In Biosolids: Impact Of Conventional Wastewater And Sludge Processing Technologies And Emerging Alternatives, Galilee U. Semblante, Faisal I. Hai, Xia Huang, Andrew S. Ball, William E. Price, Long D. Nghiem

Faisal I Hai

This paper critically reviews the fate of trace organic contaminants (TrOCs) in biosolids, with emphasis on identifying operation conditions that impact the accumulation of TrOCs in sludge during conventional wastewater and sludge treatment and assessing the technologies available for TrOC removal from biosolids. The fate of TrOCs during sludge thickening, stabilisation (e.g. aerobic digestion, anaerobic digestion, alkaline stabilisation, and composting), conditioning, and dewatering is elucidated. Operation pH, sludge retention time (SRT), and temperature have significant impact on the sorption and biodegradation of TrOCs in activated sludge that ends up in the sludge treatment line. Anaerobic digestion may exacerbate the estrogenicity …