Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 67

Full-Text Articles in Engineering Physics

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski Jan 2017

C.V. - Wojciech Budzianowski, Wojciech M. Budzianowski

Wojciech Budzianowski

-


Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski Jan 2017

Renewable Energy And Sustainable Development (Resd) Group, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski Jan 2016

Procesy Cieplne I Aparaty (Lab), Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Lab., Wojciech M. Budzianowski Jan 2016

Inżynieria Chemiczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski Jan 2015

Inżynieria Chemiczna Ćw., Wojciech M. Budzianowski

Wojciech Budzianowski

-


Tematyka Prac Doktorskich, Wojciech M. Budzianowski Jan 2015

Tematyka Prac Doktorskich, Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski Jan 2014

Termodynamika Procesowa I Techniczna Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Mechaniczno-Energetycznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski Jan 2014

Tematyka Prac Dyplomowych Dla Studentów Wydziału Chemicznego Pwr., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Mechanika Płynów Lab., Wojciech M. Budzianowski Jan 2014

Mechanika Płynów Lab., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Local Fractional Series Expansion Method For Solving Wave And Diffusion Equations On Cantor Sets, Yang Xiaojun May 2013

Local Fractional Series Expansion Method For Solving Wave And Diffusion Equations On Cantor Sets, Yang Xiaojun

Xiao-Jun Yang

We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.


Fractional Complex Transform Method For Wave Equations On Cantor Sets Within Local Fractional Differential Operator, Xiao-Jun Yang Apr 2013

Fractional Complex Transform Method For Wave Equations On Cantor Sets Within Local Fractional Differential Operator, Xiao-Jun Yang

Xiao-Jun Yang

This paper points out the fractional complex transform method for wave equations on Cantor sets within the local differential fractional operators. The proposed method is efficient to handle differential equations on Cantor sets.


Damped Wave Equation And Dissipative Wave Equation In Fractal Strings Within The Local Fractional Variational Iteration Method, Xiao-Jun Yang Apr 2013

Damped Wave Equation And Dissipative Wave Equation In Fractal Strings Within The Local Fractional Variational Iteration Method, Xiao-Jun Yang

Xiao-Jun Yang

No abstract provided.


Cantor-Type Cylindrical-Coordinate Method For Differential Equations With Local Fractional Derivatives, Xiao-Jun Yang Apr 2013

Cantor-Type Cylindrical-Coordinate Method For Differential Equations With Local Fractional Derivatives, Xiao-Jun Yang

Xiao-Jun Yang

In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.


A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng Jan 2013

A Cauchy Problem For Some Local Fractional Abstract Differential Equation With Fractal Conditions, Yang Xiaojun, Zhong Weiping, Gao Feng

Xiao-Jun Yang

Fractional calculus is an important method for mathematics and engineering [1-24]. In this paper, we review the existence and uniqueness of solutions to the Cauchy problem for the local fractional differential equation with fractal conditions \[ D^\alpha x\left( t \right)=f\left( {t,x\left( t \right)} \right),t\in \left[ {0,T} \right], x\left( {t_0 } \right)=x_0 , \] where $0<\alpha \le 1$ in a generalized Banach space. We use some new tools from Local Fractional Functional Analysis [25, 26] to obtain the results.


Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski Jan 2013

Mechaniczny Rozdział Faz Proj., Wojciech M. Budzianowski

Wojciech Budzianowski

No abstract provided.


Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski Jan 2013

Challenges And Prospects Of Processes Utilising Carbonic Anhydrase For Co2 Separation, Patrycja Szeligiewicz, Wojciech M. Budzianowski

Wojciech Budzianowski

This article provides an analysis of processes for separation CO2 by using carbonic anhydrase enzyme with particular emphasis on reactive-membrane solutions. Three available processes are characterised. Main challenges and prospects are given. It is found that in view of numerous challenges practical applications of these processes will be difficult in near future. Further research is therefore needed for improving existing processes through finding methods for eliminating their main drawbacks such as short lifetime of carbonic anhydrase or low resistance of reactive membrane systems to impurities contained in flue gases from power plants.


One-Phase Problems For Discontinuous Heat Transfer In Fractal Media, Yang Xiaojun Dec 2012

One-Phase Problems For Discontinuous Heat Transfer In Fractal Media, Yang Xiaojun

Xiao-Jun Yang

We first propose the fractal models for the one-phase problems of discontinuous transient heat transfer.The models are taken in sense of local fractional differential operator and used to describe the (dimensionless)melting of fractal solid semi-infinite materials initially at their melt temperatures.


The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun Apr 2012

The Discrete Yang-Fourier Transforms In Fractal Space, Yang Xiao-Jun

Xiao-Jun Yang

The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the local fractional calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform, used in Yang-Fourier transform in fractal space. This paper points out new standard forms of discrete Yang-Fourier transforms (DYFT) of fractal signals, and both properties and theorems are investigated in detail.


Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun Apr 2012

Expression Of Generalized Newton Iteration Method Via Generalized Local Fractional Taylor Series, Yang Xiao-Jun

Xiao-Jun Yang

Local fractional derivative and integrals are revealed as one of useful tools to deal with everywhere continuous but nowhere differentiable functions in fractal areas ranging from fundamental science to engineering. In this paper, a generalized Newton iteration method derived from the generalized local fractional Taylor series with the local fractional derivatives is reviewed. Operators on real line numbers on a fractal space are induced from Cantor set to fractional set. Existence for a generalized fixed point on generalized metric spaces may take place.


The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun Mar 2012

The Zero-Mass Renormalization Group Differential Equations And Limit Cycles In Non-Smooth Initial Value Problems, Yang Xiaojun

Xiao-Jun Yang

In the present paper, using the equation transform in fractal space, we point out the zero-mass renormalization group equations. Under limit cycles in the non-smooth initial value, we devote to the analytical technique of the local fractional Fourier series for treating zero-mass renormalization group equations, and investigate local fractional Fourier series solutions.


A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun Mar 2012

A Novel Approach To Processing Fractal Dynamical Systems Using The Yang-Fourier Transforms, Yang Xiaojun

Xiao-Jun Yang

In the present paper, local fractional continuous non-differentiable functions in fractal space are investigated, and the control method for processing dynamic systems in fractal space are proposed using the Yang-Fourier transform based on the local fractional calculus. Two illustrative paradigms for control problems in fractal space are given to elaborate the accuracy and reliable results.


Theory And Applications Of Local Fractional Fourier Analysis, Yang Xiaojun Jan 2012

Theory And Applications Of Local Fractional Fourier Analysis, Yang Xiaojun

Xiao-Jun Yang

Local fractional Fourier analysis is a generalized Fourier analysis in fractal space. The local fractional calculus is one of useful tools to process the local fractional continuously non-differentiable functions (fractal functions). Based on the local fractional derivative and integration, the present work is devoted to the theory and applications of local fractional Fourier analysis in generalized Hilbert space. We investigate the local fractional Fourier series, the Yang-Fourier transform, the generalized Yang-Fourier transform, the discrete Yang-Fourier transform and fast Yang-Fourier transform.


Heat Transfer In Discontinuous Media, Yang Xiaojun Jan 2012

Heat Transfer In Discontinuous Media, Yang Xiaojun

Xiao-Jun Yang

From the fractal geometry point of view, the interpretations of local fractional derivative and local fractional integration are pointed out in this paper. It is devoted to heat transfer in discontinuous media derived from local fractional derivative. We investigate the Fourier law and heat conduction equation (also local fractional instantaneous heat conduct equation) in fractal orthogonal system based on cantor set, and extent them. These fractional differential equations are described in local fractional derivative sense. The results are efficiently developed in discontinuous media.


A Short Note On Local Fractional Calculus Of Function Of One Variable, Yang Xiaojun Jan 2012

A Short Note On Local Fractional Calculus Of Function Of One Variable, Yang Xiaojun

Xiao-Jun Yang

Local fractional calculus (LFC) handles everywhere continuous but nowhere differentiable functions in fractal space. This note investigates the theory of local fractional derivative and integral of function of one variable. We first introduce the theory of local fractional continuity of function and history of local fractional calculus. We then consider the basic theory of local fractional derivative and integral, containing the local fractional Rolle’s theorem, L’Hospital’s rule, mean value theorem, anti-differentiation and related theorems, integration by parts and Taylor’ theorem. Finally, we study the efficient application of local fractional derivative to local fractional extreme value of non-differentiable functions, and give …


A New Successive Approximation To Non-Homogeneous Local Fractional Volterra Equation, Yang Xiaojun Jan 2012

A New Successive Approximation To Non-Homogeneous Local Fractional Volterra Equation, Yang Xiaojun

Xiao-Jun Yang

A new successive approximation approach to the non-homogeneous local fractional Valterra equation derived from local fractional calculus is proposed in this paper. The Valterra equation is described in local fractional integral operator. The theory of local fractional derivative and integration is one of useful tools to handle the fractal and continuously non-differentiable functions, was successfully applied in engineering problem. We investigate an efficient example of handling a non-homogeneous local fractional Valterra equation.


Advanced Local Fractional Calculus And Its Applications, Yang Xiaojun Jan 2012

Advanced Local Fractional Calculus And Its Applications, Yang Xiaojun

Xiao-Jun Yang

This book is the first international book to study theory and applications of local fractional calculus (LFC). It is an invitation both to the interested scientists and the engineers. It presents a thorough introduction to the recent results of local fractional calculus. It is also devoted to the application of advanced local fractional calculus on the mathematics science and engineering problems. The author focuses on multivariable local fractional calculus providing the general framework. It leads to new challenging insights and surprising correlations between fractal and fractional calculus. Keywords: Fractals - Mathematical complexity book - Local fractional calculus- Local fractional partial …


A Short Introduction To Yang-Laplace Transforms In Fractal Space, Yang Xiaojun Jan 2012

A Short Introduction To Yang-Laplace Transforms In Fractal Space, Yang Xiaojun

Xiao-Jun Yang

The Yang-Laplace transforms [W. P. Zhong, F. Gao, In: Proc. of the 2011 3rd International Conference on Computer Technology and Development, 209-213, ASME, 2011] in fractal space is a generalization of Laplace transforms derived from the local fractional calculus. This letter presents a short introduction to Yang-Laplace transforms in fractal space. At first, we present the theory of local fractional derivative and integral of non-differential functions defined on cantor set. Then the properties and theorems for Yang-Laplace transforms are tabled, and both the initial value theorem and the final value theorem are investigated. Finally, some applications to the wave equation …


Local Fractional Integral Equations And Their Applications, Yang Xiaojun Jan 2012

Local Fractional Integral Equations And Their Applications, Yang Xiaojun

Xiao-Jun Yang

This letter outlines the local fractional integral equations carried out by the local fractional calculus (LFC). We first introduce the local fractional calculus and its fractal geometrical explanation. We then investigate the local fractional Volterra/ Fredholm integral equations, local fractional nonlinear integral equations, local fractional singular integral equations and local fractional integro-differential equations. Finally, their applications of some integral equations to handle some differential equations with local fractional derivative and local fractional integral transforms in fractal space are discussed in detail.


Local Fractional Partial Differential Equations With Fractal Boundary Problems, Yang Xiaojun Jan 2012

Local Fractional Partial Differential Equations With Fractal Boundary Problems, Yang Xiaojun

Xiao-Jun Yang

This letter points out the new alternative approaches to processing local fractional partial differential equations with fractal boundary conditions. Applications of the local fractional Fourier series, the Yang-Fourier transforms and the Yang-Laplace transforms to solve of local fractional partial differential equations with fractal boundary conditions are investigated in detail.