Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering Physics

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams Nov 2015

Distributions Of Long-Lived Radioactive Nuclei Provided By Star-Forming Environments, Marco Fatuzzo, Fred Adams

Faculty Scholarship

Radioactive nuclei play an important role in planetary evolution by providing an internal heat source, which affects planetary structure and helps facilitate plate tectonics. A minimum level of nuclear activity is thought to be necessary—but not sufficient—for planets to be habitable. Extending previous work that focused on short-lived nuclei, this paper considers the delivery of long-lived radioactive nuclei to circumstellar disks in star forming regions. Although the long-lived nuclear species are always present, their abundances can be enhanced through multiple mechanisms. Most stars form in embedded cluster environments, so that disks can be enriched directly by intercepting ejecta from supernovae …


Magnetic Transport Properties Of Oriented Soft, Hard And Exchange-Coupled Magnetic Thin Films And Au25(Sc6H13)18 Spherical Nanocluster, Rukshan M. Thantirige Aug 2015

Magnetic Transport Properties Of Oriented Soft, Hard And Exchange-Coupled Magnetic Thin Films And Au25(Sc6H13)18 Spherical Nanocluster, Rukshan M. Thantirige

Doctoral Dissertations

This study was conducted with the aim of improving permanent magnetic properties of existing materials and exploring non-conventional ferromagnetic properties of gold-based nanoclusters. The first chapter of this dissertation gives an introduction to relevant fundamental concepts and proceeding chapters present findings of three projects. In the first project, shape anisotropy induced permanent magnetism in oriented magnetic thin films was investigated. Roll-to-roll nanoimprinting, a high-throughput fabrication method was utilized to fabricate densely packed Fe nanostripe-based magnetic thin films that exhibit large in-plane uniaxial anisotropy and nearly square hysteresis loops at room temperature. (BH)max exceeds 3 MGOe for samples of intermediate …


Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek May 2015

Energy Selective Neutron Imaging For The Characterization Of Polycrystalline Materials, Robin Woracek

Doctoral Dissertations

This multipart dissertation focuses on the development and evaluation of advanced methods for material testing and characterization using neutron diffraction and imaging techniques. A major focus is on exploiting diffraction contrast in energy selective neutron imaging (often referred to as Bragg edge imaging) for strain and phase mapping of crystalline materials. The dissertation also evaluates the use of neutron diffraction to study the effect of multi-axial loading, in particular the role of applying directly shear strains from the application of torsion. A portable tension-torsion-tomography loading system has been developed for in-situ measurements and integrated at major user facilities around the …


Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong Jan 2015

Effect Of Strain On Ferroelectric Field Effect In Strongly Correlated Oxide Sm0.5Nd0.5Nio3, Le Zhang, Chen, H. J. Gardner, Mark A. Koten, Jeffrey E. Shield, Xia Hong

Nebraska Center for Materials and Nanoscience: Faculty Publications

We report the effect of epitaxial strain on the magnitude and retention of the ferroelectric field effect in high quality PbZr0.3Ti0.7O3 (PZT)/3.8–4.3 nm Sm0.5Nd0.5NiO3 (SNNO) heterostructures grown on (001) LaAlO3 (LAO) and SrTiO3 (STO) substrates. For SNNO on LAO, which exhibits a first-order metal-insulator transition (MIT), switching the polarization of PZT induces a 10K shift in the transition temperature TMI, with a maximum resistance change between the on and off states of ΔR = Ron ~75%. In sharp contrast, only up to 5% resistance change has been …


Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer Jan 2015

Magnetic Force Microscopy Study Of Zr2co11-Based Nanocrystalline Materials: Effect Of Mo Addition, Lanping Yue, Yunlong Jin, Wenyong Zhang, David J. Sellmyer

Nebraska Center for Materials and Nanoscience: Faculty Publications

The addition of Molybdenum was used to modify the nanostructure and enhance coercivity of rare-earth-free Zr2Co11-based nanocrystalline permanent magnets. The effect of Mo addition on magnetic domain structures of melt spun nanocrystalline Zr16Co84−xMox (𝑥 = 0, 0.5, 1, 1.5, and 2.0) ribbons has been investigated. It was found that magnetic properties and local domain structures are strongly influenced by Mo doping. The coercivity of the samples increases with the increase in Mo content (𝑥 ≤ 1.5). The maximum energy product (𝐵𝐻)max increases with increasing 𝑥 from 0.5 MGOe for 𝑥 …


Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker Jan 2015

Charged Particle Dynamics In The Magnetic Field Of A Long Straight Current-Carrying Wire, M. Fatuzzo, A. Prentice, T. Toepker

Faculty Scholarship

The article discusses the concept behind motion of a charged particle in a non-uniform filed of a wire carrying current. Topics discussed include possible types of motion in a current carrying field, vector analysis of velocity and magnetic field of the particle and Coupled differential equations.


Electrostatic Charge On Flying Hummingbirds And Its Potential Role In Pollination, Marc Badger, Victor Manuel Ortega-Jimenez, Lisa Von Ribenau, Ashley Smiley, Robert Dudley, Alexei Gruverman , Editor Jan 2015

Electrostatic Charge On Flying Hummingbirds And Its Potential Role In Pollination, Marc Badger, Victor Manuel Ortega-Jimenez, Lisa Von Ribenau, Ashley Smiley, Robert Dudley, Alexei Gruverman , Editor

Alexei Gruverman Publications

Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna's Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.