Open Access. Powered by Scholars. Published by Universities.®

Engineering Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering Physics

Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen Dec 2010

Measurement System For High Pressure Characterizations Of Materials, Matthew K. Jacobsen

UNLV Theses, Dissertations, Professional Papers, and Capstones

Thermoelectric materials have long been investigated for possible use as power sources. This application was recently put to use in the Voyager space program, powering the deep space probes. Despite the usefulness of these materials, the use of pressure to investigate the material properties has only recently become interesting. As such, the work in this document was to developing a system for concurrently measuring the necessary properties. This system is capable of measuring the electrical resistivity, thermal conductivity, and Seebeck coefficient in the pressure range from 0 - 10 GPa. The results for zinc, almandine garnet, and nickel are presented …


Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson Jul 2010

Structural, Magnetic, And Defect Properties Of Co-Pt-Type Magnetic-Storage Alloys: Density-Functional Theory Study Of Thermal Processing Effects, Aftab Alam, Brent Kraczek, Duane D. Johnson

Duane D. Johnson

Using an optimized-basis Korringa-Kohn-Rostoker-coherent-potential approximation method, we calculate formation enthalpies ΔEf, structural, and magnetic properties of paramagnetic (PM) and ferromagnetic, disordered A1 and ordered L10 CoPt, FePd, and FePt systems that are of interest for high-density magnetic-recording media. To address processing effects, we focus on the point defects that dictate thermal properties and planar defects (e.g., c domain and antiphase boundaries) which can serve as pinning centers for magnetic domains and affect storage properties. We determine bulk Curie (Tc) and order-disorder (To-d) transition temperatures within 4% of observed values, and estimates for nanoparticles. Planar-defect energies γhklx show that the favorable …


Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla Jun 2010

Boron Carbide Based Solid State Neutron Detectors: The Effects Of Bias And Time Constant On Detection Efficiency, Nina Hong, John Mullins, Keith Foreman, Shireen Adenwalla

Shireen Adenwalla Papers

Neutron detection in thick boron carbide(BC)/n-type Si heterojunction diodes shows a threefold increase in efficiency with applied bias and longer time constants. The improved efficiencies resulting from long time constants have been conclusively linked to the much longer charge collection times in the BC layer. Neutron detection signals from both the p-type BC layer and the n-type Si side of the heterojunction diode are observed, with comparable efficiencies. Collectively, these provide strong evidence that the semiconducting BC layer plays an active role in neutron detection, both in neutron capture and in charge generation and collection.


Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner Jan 2010

Magnetodielectric Coupling Of Infrared Phonons In Single-Crystal Cu2oseo3, K. H. Miller, X. S. Xu, H. Berger, E. S. Knowles, D. J. Arenas, M. W. Meisel, D. B. Tanner

Xiaoshan Xu Papers

Reflection and transmission as a function of temperature (5–300 K) have been measured on a single crystal of the magnetoelectric ferrimagnetic compound Cu2OSeO3 utilizing light spanning the far infrared to the visible portions of the electromagnetic spectrum. The complex dielectric function and optical properties were obtained via Kramers-Kronig analysis and by fits to a Drude-Lortentz model. The fits of the infrared phonons show a magnetodielectric effect near the transition temperature (Tc~60 K). Assignments to strong far-infrared phonon modes have been made, especially those exhibiting anomalous behavior around the transition temperature.


Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn Jan 2010

Dynamical Theory Calculations Of Spin-Echo Resolved Grazing-Incidence Scattering From A Diffraction Grating, Rana Ashkar, P. Stonaha, A. L. Washington, V. R. Shah, M. R. Fitzsimmons, B. Maranville, C. F. Majkrzak, W. T. Lee, W. L. Schaich, Roger Pynn

Nebraska Center for Materials and Nanoscience: Faculty Publications

Neutrons scattered or reflected from a diffraction grating are subject to a periodic potential analogous to the potential experienced by electrons within a crystal. Hence, the wavefunction of the neutrons can be expanded in terms of Bloch waves and a dynamical theory can be applied to interpret the scattering phenomenon. In this paper, a dynamical theory is used to calculate the results of neutron spin-echo resolved grazing-incidence scattering (SERGIS) from a silicon diffraction grating with a rectangular profile. The calculations are compared with SERGIS measurements made on the same grating at two neutron sources: a pulsed source and a continuous …


Interphase Energies Of Hcp Precipitates In Fcc Metals: A Density-Functional Theory Study In Al-Ag, Daniel Finkenstadt, Duane D. Johnson Jan 2010

Interphase Energies Of Hcp Precipitates In Fcc Metals: A Density-Functional Theory Study In Al-Ag, Daniel Finkenstadt, Duane D. Johnson

Duane D. Johnson

Density-functional theory (DFT) calculations of interphase boundary energies relevant to hexagonal-close-packed (hcp) γ-precipitate formation were performed within approximate unit cells that mirror the experimental conditions in face-centered-cubic (fcc) Al-Ag solid solutions. In Al-rich, fcc Al-Ag, γ precipitates are observed to form rapidly with large (300+) aspect ratios even though the Al stacking-fault energy is high (approximately 130 mJ/m2), which should suppress hcp ribbon formation according to standard arguments. Our DFT results show why high-aspect ratio plates occur and why previous estimates based on Wulff construction were orders of magnitude less than observed values. Using DFT, we obtain a Gibbs free-energy …


Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt Jan 2010

Lattice Dynamical Probe Of Charge Order And Antipolar Bilayer Stacking In Lufe2o4, X. S. Xu, J. De Groot, Q.-C. Sun, B. C. Sales, D. Mandrus, M. Angst, A. P. Litvinchuk, J. L. Musfeldt

Xiaoshan Xu Papers

We investigated the infrared response of LuFe2O4 through the series of charge, magnetic, and structural transitions. All vibrational modes couple strongly to the charge order, whereas the LuO zone-folding modes are also sensitive to magnetic order and structural distortion. The dramatic splitting of the LuO2 layer mode is attributed to charge-rich/poor proximity effects and its temperature dependence reveals the antipolar nature of the W layer pattern.


Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt Jan 2010

Optical Properties Of Quasi-Tetragonal Bifeo3 Thin Films, P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

Optical transmission spectroscopy and spectroscopic ellipsometry were used to extract the optical properties of an epitaxially grown quasi-tetragonal BiFeO3 thin film in the near infrared to near ultraviolet range. The absorption spectrum is overall blue shifted compared with that of rhombohedral BiFeO3, with an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ~0.4 eV higher than those of the rhombohedral counterpart. We interpret these results in terms of structural strain and local symmetry breaking.


Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt Jan 2010

Tunable Band Gap In Bi(Fe1−Xmnx)O3 Films, X. S. Xu, J. F. Ihlefeld, J. H. Lee, O. K. Ezekoye, E. Vlahos, R. Ramesh, V. Gopalan, X. Q. Pan, D. G. Schlom, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate band gap tunability in polar oxides, we measured the optical properties of a series of Bi(Fe1−xMnx)O3 thin films. The absorption response of the mixed metal solid solutions is approximately a linear combination of the characteristics of the two end members, a result that demonstrates straightforward band gap tunability in this system.


Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom Jan 2010

Adsorption-Controlled Growth Of Bimno3 Films By Molecular-Beam Epitaxy, J. H. Lee, X. Ke, R. Misra, J. F. Ihlefeld, X. S. Xu, Z. G. Mei, T. Heeg, M. Roeckerath, J. Schubert, Z. K. Liu, J. L. Musfeldt, P. Schiffer, D. G. Schlom

Xiaoshan Xu Papers

We have developed the means to grow BiMnO3 thin films with unparalleled structural perfection by reactive molecular-beam epitaxy and determined its band gap. Film growth occurs in an adsorption-controlled growth regime. Within this growth window bounded by oxygen pressure and substrate temperature at a fixed bismuth overpressure, single-phase films of the metastable perovskite BiMnO3 may be grown by epitaxial stabilization. X-ray diffraction reveals phase-pure and epitaxial films with w rocking curve full width at half maximum values as narrow as 11 arc sec (0.003°). Optical absorption measurements reveal that BiMnO3 has a direct band gap of 1.1±0.1 …