Open Access. Powered by Scholars. Published by Universities.®

Biological and Chemical Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Biological and Chemical Physics

Charge Transfer Assisted By Collective H-Bonding Network Dynamics, Omar F. Mohammed, Christina M. Othon, Oh-Hoon Kwon, Ahmed H. Zewail Jul 2009

Charge Transfer Assisted By Collective H-Bonding Network Dynamics, Omar F. Mohammed, Christina M. Othon, Oh-Hoon Kwon, Ahmed H. Zewail

Christina M Othon

Although there have been numerous studies of solvation, the role of solvent specific and collective interactions, especially for charge-transfer processes, remains difficult to unravel. Here, we report, using femtosecond fluorescence up-conversion and steady-state spectroscopic measurements, studies of well-designed single-sited formylperylene (FPe) in binary solvents. One of the solvents (methanol, MOH) can selectively hydrogen (H) bond to the carbonyl (C=O) site, while the other (acetonitrile, ACN) cannot, but both have similar polarity ( for MOH and for ACN). The results reveal that ultrafast charge transfer from the perylene unit to the carbonyl group of FPe is facilitated by site-specific H-bonding interactions …


Solvation In Protein (Un)Folding: Effect Of Local And Bulk Dynamics In The Melittin Tetramer-Monomer Transition, Christina M. Othon, Oh-Hoon Kwon, Milo M. Lin, Ahmed H. Zewail May 2009

Solvation In Protein (Un)Folding: Effect Of Local And Bulk Dynamics In The Melittin Tetramer-Monomer Transition, Christina M. Othon, Oh-Hoon Kwon, Milo M. Lin, Ahmed H. Zewail

Christina M Othon

Protein structural integrity and flexibility are intimately tied to solvation. Here we examine the effect that changes in bulk and local solvent properties have on protein structure and stability. We observe the change in solvation of an unfolding of the protein model, melittin, in the presence of a denaturant, trifluoroethanol. The peptide system displays a well defined transition in that the tetramer unfolds without disrupting the secondary or tertiary structure. In the absence of local structural perturbation, we are able to reveal exclusively the role of solvation dynamics in protein structure stabilization and the (un)folding pathway. A sudden retardation in …


Appearance Of A Fractional Stokes-Einstein Relation In Water And A Structural Interpretation Of Its Onset, L. Xu, F. Mallamace, Z. Yan, Francis W. Starr, S. V. Buldyrev, H. E. Stanley Dec 2008

Appearance Of A Fractional Stokes-Einstein Relation In Water And A Structural Interpretation Of Its Onset, L. Xu, F. Mallamace, Z. Yan, Francis W. Starr, S. V. Buldyrev, H. E. Stanley

Francis Starr

The Stokes–Einstein relation has long been regarded as one of the hallmarks of transport in liquids. It predicts that the self-diffusion constant D is proportional to (τ/T)−1, where τ is the structural relaxation time and T is the temperature. Here, we present experimental data on water confirming that, below a crossover temperature T× ≈ 290 K, the Stokes– Einstein relation is replaced by a ‘fractional’ Stokes–Einstein relation D ∼ (τ/T)−ζ with ζ ≈ 3/5 (refs 1–6). We interpret the microscopic origin of this crossover by analysing the OH- stretch region of the Fourier transform infrared spectrum over a temperature range …


Review Of Biocd Physics And Technology, David D. Nolte Dec 2008

Review Of Biocd Physics And Technology, David D. Nolte

David D Nolte

Spinning biodisks have advantages that make them attractive for specialized biochip applications. The two main classes of spinning biodisks are microfluidic disks and bio-optical compact disks BioCD. Microfluidic biodisks take advantage of noninertial pumping for lab-on-a-chip devices using noninertial valves and switches under centrifugal and Coriolis forces to distribute fluids about the disks. BioCDs use spinning-disk interferometry, under the condition of common-path phase quadrature, to perform interferometric label-free detection of molecular recognition and binding. The optical detection of bound molecules on a disk is facilitated by rapid spinning that enables high-speed repetitive sampling to eliminate 1/ f noise through common-mode …