Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physics

High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick Nov 2019

High Power And Optomechanics In Advanced Ligo Detectors, Terra Christine Hardwick

LSU Doctoral Dissertations

In September 2015, a new era of astronomy began with the first direct detection of grav- itational waves from a binary black hole coalescence. The event was captured by the Laser Interferometer Gravitational-wave Observatory, comprised of two long-baseline interferometers, one in Livingston, LA and one in Hanford, WA. At the time of the first detection, the interferometers were part way through an upgrade to an advanced configuration and were operating with a strain sensitivity of just better than 10−23/Hz1/2 around 100Hz. The full Advanced LIGO design calls for sensitivity of a few parts in 10−24/Hz …


Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh Jan 2019

Gravitational Radiation From Superradiant Instabilities Of Rotating Black Holes, Shrobana Ghosh

Electronic Theses and Dissertations

We use the Teukolsky formalism to calculate the gravitational radiation from a non-axi\-symmetric cloud formed due to superradiant amplification of a spin-0 bosonic field. We focus on the prospects of the future space-based gravitational wave detector, Laser Interferometer Space Antenna (LISA), and the current version of ground-based detector, Advanced Laser Interferometer Gravitational-Wave Observatory (AdLIGO), to detect or constrain scalars with mass in the range $m_s\in [10^{-19},10^{-15}]$ eV and $m_s\in[10^{-14},10^{-11}]$ eV, respectively. Using astrophysical models of black hole populations calibrated to observations we find that, in optimistic scenarios, AdLIGO could detect up to $10^4$ resolvable events in a four-year search if …