Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physics

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa Aug 2016

Fractional Charge Methods For Correcting Approximate Kohn-Sham Potentials, Darya N. Komsa

Electronic Thesis and Dissertation Repository

The Kohn-Sham density functional theory relies on approximating the exchange-correlation energy functional or the corresponding potential. The behavior of the exchange-correlation potential as a function of position in a system can be used to detect and correct deficiencies of the parent functional. The too-fast decay of the potentials derived from common density functionals is a major problem, because it causes inaccurate Rydberg excitation energies and erroneous fractional charges in dissociating molecules. An efficient method to correct the shape of the exchange-correlation potential was proposed by Gaiduk et al. [A. P. Gaiduk, D. S. Firaha, and V. N. Staroverov, Phys. Rev. …


Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose Jun 2016

Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose

Physics Faculty Publications and Presentations

Magnetism and energetics of intrinsic and extrinsic defects and defect clusters in bulk and surfaces of SnO2 is investigated using first-principles to understand the role of surfaces in inducing magnetism in Zn doped nanoparticles. We find that Sn vacancies induce the largest magnetic moment in bulk and on surfaces. However, they have very large formation energies in bulk as well as on surfaces. Oxygen vacancies on the other hand are much easier to create than VSn, but neutral and VO+2 vacancies do not induce any magnetism in bulk as well as on surfaces. VO …


Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose Mar 2016

Defect Driven Magnetism In Doped Sno2 Nanoparticles: Surface Effects, Pushpa Raghani, Pankaj Kumar, Balaji Ramanujam, Alex Punnoose

Pushpa Raghani

Magnetism and energetics of intrinsic and extrinsic defects and defect clusters in bulk and surfaces of SnO2 is investigated using first-principles to understand the role of surfaces in inducing magnetism in Zn doped nanoparticles. We find that Sn vacancies induce the largest magnetic moment in bulk and on surfaces. However, they have very large formation energies in bulk as well as on surfaces. Oxygen vacancies on the other hand are much easier to create than VSn, but neutral and VO+2 vacancies do not induce any magnetism in bulk as well as on surfaces. VO+1 induce small magnetism in bulk and …


The Closo-Si12C12 Molecule From Cluster To Crystal: A Theoretical Prediction, Xiaofeng F. Duan, Larry W. Burggraf Mar 2016

The Closo-Si12C12 Molecule From Cluster To Crystal: A Theoretical Prediction, Xiaofeng F. Duan, Larry W. Burggraf

Faculty Publications

The structure of closo-Si12C12 is unique among stable SinCm isomers (n, m > 4) because of its high symmetry, π–π stacking of C6 rings and unsaturated silicon atoms at symmetrical peripheral positions. Dimerization potential surfaces reveal various dimerization reactions that form between two closo-Si12C12 molecules through Si–Si bonds at unsaturated Si atoms. As a result the closo-Si12C12 molecule is capable of polymerization to form stable 1D polymer chains, 2D crystal layers, and 3D crystals. 2D crystal structures formed by side-side polymerization satisfy eight Si valences on each monomer …


Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz Jan 2016

Scalability Improvements To Nrlmol For Dft Calculations Of Large Molecules, Carlos Manuel Diaz

Open Access Theses & Dissertations

Advances in high performance computing (HPC) have provided a way to treat large, computationally demanding tasks using thousands of processors. With the development of more powerful HPC architectures, the need to create efficient and scalable code has grown more important. Electronic structure calculations are valuable in understanding experimental observations and are routinely used for new materials predictions. For the electronic structure calculations, the memory and computation time are proportional to the number of atoms. Memory requirements for these calculations scale as N2, where N is the number of atoms. While the recent advances in HPC offer platforms with large numbers …


A Comparative Study Of The Electronic Properties Of Aluminum Nitride Compounds, Rezek Mohammad, Şenay Katircioğlu Jan 2016

A Comparative Study Of The Electronic Properties Of Aluminum Nitride Compounds, Rezek Mohammad, Şenay Katircioğlu

Turkish Journal of Physics

Electronic properties of aluminum nitride in wurtzite, zinc-blende, and rock-salt phases are investigated by a full potential-linearized augmented plane waves method based on density functional theory within standard local density approximation and its four improved versions. Local density approximation corrected by the generalized gradient functional of Perdew-Wang-Engel-Vosko is found to be more successful than the other generalized gradient functional approximations considered in this work for providing reasonable lattice constants, energy gaps, effective electron and hole masses, and optical features for AlN phases. Although local density approximation corrected by modified Becke-Johnson potential underestimates the static dielectric constants, it provides the largest …


First-Principles Studies Of Group Iv And Group V Related Two Dimensional Materials, Gaoxue Wang Jan 2016

First-Principles Studies Of Group Iv And Group V Related Two Dimensional Materials, Gaoxue Wang

Dissertations, Master's Theses and Master's Reports

Two dimensional (2D) materials have been extensively studied due to their novel properties and technologically important applications. Especially, the discovery of graphene has stimulated an avalanche of investigations to exploit its novel properties for applications at nanoscale. In the post-silicon era, graphene has been widely regarded as the most promising building blocks for the electronic devices. However, its metallic nature together with sensitivity to the environment leads to somewhat limited scope of applications. A finite band gap in a material is known to be essential for the fabrication of devices such as transistors. Such a limitation associated with graphene has …