Open Access. Powered by Scholars. Published by Universities.®

Physics Commons

Open Access. Powered by Scholars. Published by Universities.®

2020

Series

Discipline
Institution
Keyword
Publication
File Type

Articles 1 - 30 of 628

Full-Text Articles in Physics

Quantum Simulation Of The Schrodinger Equation Using Ibm's Quantum Computers, Mohamed Abouelela Dec 2020

Quantum Simulation Of The Schrodinger Equation Using Ibm's Quantum Computers, Mohamed Abouelela

Capstone and Graduation Projects

This thesis explores the capabilities of a quantum computer to simulate quantum systems. We give an introduction to the basics of quantum computing with the Bernstein-Vazirani algorithm as a demonstration. Four quantum systems are then simulated using IBM's QASM simulator using 6 qubits: the free particle, eigenstate of an infinite-well, particle in a step potential, and quantum tunneling. Because of the high number of gates, a 6-qubit simulation will not be feasible on current quantum computers. The number of qubits was, thus, reduced to 4 qubits, and was simulated on IBM's 5 qubit quantum computers (ibmq 5 vigo). We conclude …


Near Conformal Perturbation Theory In Syk Type Models, Sumit R. Das, Animik Ghosh, Antal Jevicki, Kenta Suzuki Dec 2020

Near Conformal Perturbation Theory In Syk Type Models, Sumit R. Das, Animik Ghosh, Antal Jevicki, Kenta Suzuki

Physics and Astronomy Faculty Publications

We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale J and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbative scheme of arXiv:1608.07567 based on a specific (off-shell) breaking of conformal invariance in the UV, adjusted to yield the exact large-N saddle point. While this breaking term formally vanishes on-shell, it has a non-trivial effect on correlation functions and the effective action. In particular, it leads to the Schwarzian action with a specific coupling to bi-local matter. The …


Local Electronic And Magnetic Properties Of The Doped Topological Insulators Bi₂Se₃:Ca And Bi₂Te₃:Mn Investigated Using Ion-Implanted ⁸Li Β-Nmr, Ryan M. L. Mcfadden, Aris Chatzichristos, David L. Cortie, Derek Fujimoto, Yew San Hor, Huiwen Ji, Victoria L. Karner, For Full List Of Authors, See Publisher's Website. Dec 2020

Local Electronic And Magnetic Properties Of The Doped Topological Insulators Bi₂Se₃:Ca And Bi₂Te₃:Mn Investigated Using Ion-Implanted ⁸Li Β-Nmr, Ryan M. L. Mcfadden, Aris Chatzichristos, David L. Cortie, Derek Fujimoto, Yew San Hor, Huiwen Ji, Victoria L. Karner, For Full List Of Authors, See Publisher's Website.

Physics Faculty Research & Creative Works

We report β-NMR measurements in Bi2Se3:Ca and Bi2Te3:Mn single crystals using 8Li+ implanted to depths on the order of 100 nm. Above ∼200K, spin-lattice relaxation reveals diffusion of 8Li+, with activation energies of ∼0.4eV (∼0.2eV) in Bi2Se3:Ca (Bi2Te3:Mn). At lower temperatures, the NMR properties are those of a heavily doped semiconductor in the metallic limit, with Korringa relaxation and a small, negative, temperature-dependent Knight shift in Bi2Se3:Ca. From this, we make a detailed comparison with …


Evolution Of Magnetic-Field-Induced Ordering In The Layered Structure Quantum Heisenberg Triangular-Lattice Antiferromagnet Ba3Cosb2O9, Nathanael Alexander Fortune, Q. Huang, T. Hong, J. Ma, E. S. Choi, S. T. Hannahs, Z. Y. Zhao, X. F. Sun, Y. Takano, H. D. Zhou Dec 2020

Evolution Of Magnetic-Field-Induced Ordering In The Layered Structure Quantum Heisenberg Triangular-Lattice Antiferromagnet Ba3Cosb2O9, Nathanael Alexander Fortune, Q. Huang, T. Hong, J. Ma, E. S. Choi, S. T. Hannahs, Z. Y. Zhao, X. F. Sun, Y. Takano, H. D. Zhou

Physics: Faculty Publications

Quantum fluctuations in the effective spin-1/2 layered structure triangular-lattice quantum Heisenberg antiferromagnet Ba3CoSb2O9 lift the classical degeneracy of the antiferromagnetic ground state in magnetic field, producing a series of novel spin structures for magnetic fields applied within the crystallographic ab plane, including a celebrated collinear ‘up-up-down’ spin ordering with magnetization equal to 1/3 of the saturation magnetization over an extended field range. Theoretically unresolved, however, are the effects of interlayer antferromagnetic coupling and transverse magnetic fields on the ground states of this system. Additional magnetic-field-induced phase transitions are theoretically expected and in some cases have …


Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson Dec 2020

Analysis And Implementation Of The Maximum Likelihood Expectation Maximization Algorithm For Find, Angus Boyd Jameson

Student Research Projects

This thesis presents an organized explanation and breakdown of the Maximum Likelihood Expectation Maximization image reconstruction algorithm. This background research was used to develop a means of implementing the algorithm into the imaging code for UNH's Field Deployable Imaging Neutron Detector to improve its ability to resolve complex neutron sources. This thesis provides an overview for this implementation scheme, and include the results of a couple of reconstruction tests for the algorithm. A discussion is given on the current state of the algorithm and its integration with the neutron detector system, and suggestions are given for how the work and …


The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia Dec 2020

The Nanograv 12.5 Yr Data Set: Observations And Narrowband Timing Of 47 Millisecond Pulsars, Md F. Alam, Zaven Arzoumanian, Paul T. Baker, Harsha Blumer, Keith E. Bohler, Keeisi Caballero, Richard S. Camuccio, Yhamil Garcia

Physics and Astronomy Faculty Publications and Presentations

We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on "narrowband" analysis, in which many TOAs are calculated within narrow radio-frequency …


What Is Nonlocal In Counterfactual Quantum Communication?, Yakir Aharonov, Daniel Rohrlich Dec 2020

What Is Nonlocal In Counterfactual Quantum Communication?, Yakir Aharonov, Daniel Rohrlich

Mathematics, Physics, and Computer Science Faculty Articles and Research

We revisit the “counterfactual quantum communication” of Salih et al. [1], who claim that an observer “Bob” can send one bit of information to a second observer “Alice” without any physical particle traveling between them. We show that a locally conserved, massless current—specifically, a current of modular angular momentum, Lz mod 2ℏ—carries the one bit of information. We integrate the flux of Lz mod 2ℏ from Bob to Alice and show that it equals one of the two eigenvalues of Lz mod 2ℏ, either 0 or ℏ, thus precisely accounting for the one bit of information he sends her.We previously …


Traveling-Wave Electrophoresis: 1d Model, Austin Green Dec 2020

Traveling-Wave Electrophoresis: 1d Model, Austin Green

Physics Capstone Projects

A 1D model of traveling-wave electrophoresis predicts that molecular diffusion raises the trapping threshold and that other physical properties of the species effect the trapping threshold as well. Small concentrations, below 5μM, raise the trapping threshold for high diffusivity species, resulting in a lower efficiency. Species with a mid-range electrophoretic mobility and diffusivity have their trapping threshold slightly lowered with an increase in concentration, leading to more particles traveling with the wave.


Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells Dec 2020

Quantifying Anticancer Drug Doxorubicin Binding To Dna Using Optical Tweezers, Zachary Ells

Honors Program Theses and Projects

Doxorubicin is a successful anticancer drug approved for use in the 1970s and is considered to be one of the most effective cancer treatment methods today. Although Doxorubicin has positive survival statistics it has very negative side effects in many cases. Bleeding from the soles of the palms and feet, along with excruciating pain is often exhibited through the administration of this drug. Based on the preliminary findings utilizing optical tweezers we anticipate that this study will provide critical information about the drug binding mechanism. Single molecule biophysics techniques have provided useful insight into the DNA-binding mechanisms of small molecules. …


Published Research Documents In Nuclear And High Energy Physics From 1996-2019: A Bibliometric Analysis Of Leading Countries In Comparison With India, Ishwar Dutt Sharma Dr Dec 2020

Published Research Documents In Nuclear And High Energy Physics From 1996-2019: A Bibliometric Analysis Of Leading Countries In Comparison With India, Ishwar Dutt Sharma Dr

Library Philosophy and Practice (e-journal)

A bibliometric analysis of scientific research production of the top five most productive countries in comparison with India in nuclear and high energy physics is presented during the period 1996-2019 using Scopus-linked SCImago electronic database. To validate the present study, some selected bibliometric indicators such as published documents, their citations and citations per document has been studied. In total, 769180 research documents were published worldwide in journal, conference proceedings and in book series. United States (16.47%), Germany(8.64%), Japan (6.65%), China (6.41%) and Russian Federation (5.89%) were the top most productive countries rankwise, whereas India ranked 10th with 21157 research …


Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri Dec 2020

Retention Of Rising Oil Droplets In Density Stratification, Tracy L. Mandel, De Zhen Zhou, Lindsay Waldrop, Maxime Theillard, Dustin Kleckner, Shilpa Khatri

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

In this study, we present results from experiments on the retention of single oil droplets rising through a two-layer density stratification, with the goal of quantifying and parametrizing the impact of stratification on timescales that describe the delay in rising. These experiments confirm the significant slowdown observed in past literature of settling and rising particles and droplets in stratification, and these are the first experiments to study single liquid droplets as opposed to solid particles or bubbles. By tracking the motion of the droplets as they rise through a stratified fluid, we identify two new timescales which quantitatively describe this …


1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

1. Test Data, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains recorded and processed bubble sounds under different conditions: a few bubbles vs. constant flow bubbles. Each condition is tested with nitrogen and with methane.


4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

4. Metadata Files, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all ReadMe files for test data, modeling data, and localization data, as well as the corresponding codes.


5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

5. Programs And Algorithms, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all codes for the study.


6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

6. Supplemental Materials, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains all conference presentations, manuscripts, technical reports, posters.


2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

2. Modeling, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for acoustic bubble modeling.


3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao Dec 2020

3. Localization, Zhiqu Lu, Likun Zhang, Lei Cao

Gulf Research Program Data Sets

This data set contains the results for oil leakage source localization.


Toward Non-Invasive Measurement Of Atmospheric Temperature Using Vibro-Rotational Raman Spectra Of Diatomic Gases, Tyler Capek, Jacek Borysow, Claudio Mazzoleni, Massimo Moraldi Dec 2020

Toward Non-Invasive Measurement Of Atmospheric Temperature Using Vibro-Rotational Raman Spectra Of Diatomic Gases, Tyler Capek, Jacek Borysow, Claudio Mazzoleni, Massimo Moraldi

Michigan Tech Publications

We demonstrate precise determination of atmospheric temperature using vibro-rotational Raman (VRR) spectra of molecular nitrogen and oxygen in the range of 292–293 K. We used a continuous wave fiber laser operating at 10 W near 532 nm as an excitation source in conjunction with a multi-pass cell. First, we show that the approximation that nitrogen and oxygen molecules behave like rigid rotors leads to erroneous derivations of temperature values from VRR spectra. Then, we account for molecular non-rigidity and compare four different methods for the determination of air temperature. Each method requires no temperature calibration. The first method involves fitting …


Fisher Formalism For Anisotropic Gravitational-Wave Background Searches With Pulsar Timing Arrays, Y. Ali-Haïmoud, Tristan L. Smith, C. M. F. Mingarelli Dec 2020

Fisher Formalism For Anisotropic Gravitational-Wave Background Searches With Pulsar Timing Arrays, Y. Ali-Haïmoud, Tristan L. Smith, C. M. F. Mingarelli

Physics & Astronomy Faculty Works

Pulsar timing arrays (PTAs) are currently the only experiments directly sensitive to gravitational waves with decade-long periods. Within the next five to ten years, PTAs are expected to detect the stochastic gravitational-wave background (SGWB) collectively sourced by inspiraling supermassive black hole binaries. It is expected that this background is mostly isotropic, and current searches focus on the monopole part of the SGWB. Looking ahead, anisotropies in the SGWB may provide a trove of additional information on both known and unknown astrophysical and cosmological sources. In this paper, we build a simple yet realistic Fisher formalism for anisotropic SGWB searches with …


Robustness Of Baryon Acoustic Oscillation Constraints For Early-Universe Modifications Of Λcdm Cosmology, J. L. Bernal, Tristan L. Smith, K. K. Boddy, M. Kamionkowski Dec 2020

Robustness Of Baryon Acoustic Oscillation Constraints For Early-Universe Modifications Of Λcdm Cosmology, J. L. Bernal, Tristan L. Smith, K. K. Boddy, M. Kamionkowski

Physics & Astronomy Faculty Works

Baryon acoustic oscillations (BAO) provide a robust standard ruler and can be used to constrain the expansion history of the Universe at low redshift. Standard BAO analyses return a model-independent measurement of the expansion rate and the comoving angular diameter distance as a function of redshift, normalized by the sound horizon at radiation drag. However, this methodology relies on anisotropic distance distortions of a fixed, precomputed template (obtained in a given fiducial cosmology) in order to fit the observations. Therefore, it may be possible that extensions to the consensus ΛCDM add contributions to the BAO feature that cannot be captured …


Eureka Moment As Divine Spark In The Light Of Direct Experience With The Spirit And Nature, Victor Christianto, Florentin Smarandache Dec 2020

Eureka Moment As Divine Spark In The Light Of Direct Experience With The Spirit And Nature, Victor Christianto, Florentin Smarandache

Branch Mathematics and Statistics Faculty and Staff Publications

In the ancient world, the Greeks believed that all great insights came from one of nine muses, divine sisters who brought inspiration to mere mortals. In the modern world, few people still believe in the muses, but we all still love to hear stories of sudden inspiration. Like Newton and the apple, or Archimedes and the bathtub (both another type of myth), we’re eager to hear and to share stories about flashes of insight. But what does it take to be actually creative? How to have such a flash insight? Turns out, there is real science behind "aha moments." We …


National Security And Climate Change, Madison Moran Dec 2020

National Security And Climate Change, Madison Moran

Physics Capstone Projects

Certain scientific subjects are often divisive or technical, which makes those topics difficult to discuss with audiences outside the scientific sphere. One way of getting around this obstacle is to cater scientific communication to different target audiences to cut through any audience biases. In order to accomplish that, a communicator needs to understand the relationship between audiences’ worldviews, and what they know, feel, and do regarding the subject at hand, and then how that relationship influences the types of media audiences trust and to which they respond positively. The following study investigates the worldviews of a military audience with respect …


Precision Measurement Of The Ratio Β(Y(3S) → Τ + Τ) / Β( Y(3S)→ Μ+ Μ, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, T. Schroeder, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, Milind Purohit, Et. Al. Dec 2020

Precision Measurement Of The Ratio Β(Y(3S) → Τ + Τ−) / Β( Y(3S)→ Μ+ Μ−, J. P. Lees, V. Poireau, V. Tisserand, E. Grauges, A. Palano, G. Eigen, D. N. Brown, Yu. G. Kolomensky, M. Fritsch, H. Koch, T. Schroeder, R. Cheaib, C. Hearty, T. S. Mattison, J. A. Mckenna, R. Y. So, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, Milind Purohit, Et. Al.

Faculty Publications

We report on a precision measurement of the ratio Rϒð3SÞ τμ ¼ Bðϒð3SÞ → τþτ−Þ=Bðϒð3SÞ → μþμ−Þ using data collected with the BABAR detector at the SLAC PEP-II eþe− collider. The measurement is based on a 28 fb−1 data sample collected at a center-of-mass energy of 10.355 GeV corresponding to a sample of 122 million ϒð3SÞ mesons. The ratio is measured to be Rϒð3SÞ τμ ¼ 0.966 0.008stat 0.014syst and is in agreement with the standard model prediction of 0.9948 within 2 standard deviations. The uncertainty in Rϒð3SÞ τμ is almost an order of magnitude smaller than the only previous …


Large Global Variations In Measured Airborne Metal Concentrations Driven By Anthropogenic Sources, Jacob Mcneill, Randal V. Martin, Nofel Lagrosas, 35 Co-Authors Dec 2020

Large Global Variations In Measured Airborne Metal Concentrations Driven By Anthropogenic Sources, Jacob Mcneill, Randal V. Martin, Nofel Lagrosas, 35 Co-Authors

SOSE Affiliate: Manila Observatory

Globally consistent measurements of airborne metal concentrations in fine particulate matter (PM2.5) are important for understanding potential health impacts, prioritizing air pollution mitigation strategies, and enabling global chemical transport model development. PM2.5 filter samples (N ~ 800 from 19 locations) collected from a globally distributed surface particulate matter sampling network (SPARTAN) between January 2013 and April 2019 were analyzed for particulate mass and trace metals content. Metal concentrations exhibited pronounced spatial variation, primarily driven by anthropogenic activities. PM2.5 levels of lead, arsenic, chromium, and zinc were significantly enriched at some locations by factors of 100–3000 compared …


Data From: Anomalous Electron Temperature, Bela G. Fejer Dec 2020

Data From: Anomalous Electron Temperature, Bela G. Fejer

Browse all Datasets

Anomalous Electron Temperatures in the evening equatorial ionosphere. These are outputs of simulations from the semi-empirical SAMI2-PE (Varney et al. 2012) for the night of the 02 and 05 August 2011.


Infinite Volume Reconstruction Method Qed Pion Mass Corrections On The Lattice, Michael Riberdy Dec 2020

Infinite Volume Reconstruction Method Qed Pion Mass Corrections On The Lattice, Michael Riberdy

Honors Scholar Theses

We use the Infinite Volume Reconstruction Method to calculate the charged/neutral pion mass difference. The hadronic tensor is calculated on the lattice using a QCD+QED framework, and the mass shift is calculated with exponentially-suppressed finite volume errors. In this paper we discuss the Feynman diagrams relevant to the pion mass difference and we recapitulate the advantages of the Infinite Volume Reconstruction Method. We then discuss the extrapolation to the continuum limit, and report a charged/neutral pion mass difference of 4.52 MeV, which is within 1.44% of the accepted value.


Search For Bottom-Type, Vectorlike Quark Pair Production In A Fully Hadronic Final State In Proton-Proton Collisions At S =13 Tev, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan, S Johnson Dec 2020

Search For Bottom-Type, Vectorlike Quark Pair Production In A Fully Hadronic Final State In Proton-Proton Collisions At S =13 Tev, The Cms Collaboration, A. M. Sirunyan, A. Tumasyan, W. Adam, F. Ambrogi, T. Bergauer, Julie M. Hogan, S Johnson

Physics and Engineering Faculty Publications

A search is described for the production of a pair of bottom-type vectorlike quarks (VLQs), each decaying into a b or b¯ quark and either a Higgs or a Z boson, with a mass greater than 1000 GeV. The analysis is based on data from proton-proton collisions at a 13 TeV center-of-mass energy recorded at the CERN LHC, corresponding to a total integrated luminosity of 137 fb-1. As the predominant decay modes of the Higgs and Z bosons are to a pair of quarks, the analysis focuses on final states consisting of jets resulting from the six quarks produced in …


Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman Dec 2020

Feedback Induced Magnetic Phases In Binary Bose-Einstein Condensates, Hilary M. Hurst, Shangjie Guo, I. B. Spielman

Faculty Research, Scholarly, and Creative Activity

Weak measurement in tandem with real-time feedback control is a new route toward engineering novel non-equilibrium quantum matter. Here we develop a theoretical toolbox for quantum feedback control of multicomponent Bose-Einstein condensates (BECs) using backaction-limited weak measurements in conjunction with spatially resolved feedback. Feedback in the form of a single-particle potential can introduce effective interactions that enter into the stochastic equation governing system dynamics. The effective interactions are tunable and can be made analogous to Feshbach resonances -- spin-independent and spin-dependent -- but without changing atomic scattering parameters. Feedback cooling prevents runaway heating due to measurement backaction and we present …


How Curriculum Developers Cognitive Theories Influence Curriculum Development, Andrew Boudreaux, Andy Elby Dec 2020

How Curriculum Developers Cognitive Theories Influence Curriculum Development, Andrew Boudreaux, Andy Elby

Physics & Astronomy

[This paper is part of the Focused Collection on Curriculum Development: Theory into Design.] When we examined student responses to questions about the direction of the static friction force in various situations, we both had strong ideas about how to write a tutorial to promote deeper understanding. But our ideas were quite different. In this theoretical paper, we present the two contrasting tutorials and show how their differences can be traced to different theoretical orientations toward cognition and learning. We do not claim that one tutorial—or the theoretical framework loosely associated with it—is superior. Instead, we hope to illustrate two …


Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V Dec 2020

Driven Dipolariton Transistors In Y-Shaped Channels, Patrick Serafin, Tim Byrnes, German Kolmakov V

Publications and Research

Exciton-dipolaritons are investigated as a platform for realizing working elements of a polaritronic transistor. Exciton-dipolaritons are three-way superposition of cavity photons, direct and indirect excitons in a bilayer semiconducting system embedded in an optical microcavity. Using the forced diffusion equation for dipolaritons, we study the room-temperature dynamics of dipolaritons in a transition-metal dichalcogenide (TMD) heterogeneous bilayer. Specifically, we considered a MoSe2-WS2 heterostructure, where a Y-shaped channel guiding the dipolariton propagation is produced. We demonstrate that polaritronic signals can be redistributed in the channels by applying a driving voltage in an optimal direction. Our findings open a route …